
1

Survey on the Usage of Machine Learning Techniques for Malware
Analysis

DANIELE UCCI, “La Sapienza” University of Rome
LEONARDO ANIELLO, “La Sapienza” University of Rome
ROBERTO BALDONI, “La Sapienza” University of Rome

Coping with malware is ge�ing more and more challenging, given their relentless growth in complexity
and volume. One of the most common approaches in literature is using machine learning techniques, to
automatically learn models and pa�erns behind such complexity, and to develop technologies for keeping
pace with the speed of development of novel malware. �is survey aims at providing an overview on the way
machine learning has been used so far in the context of malware analysis.

We systematize surveyed papers according to their objectives (i.e., the expected output, what the analysis
aims to), what information about malware they speci�cally use (i.e., the features), and what machine learning
techniques they employ (i.e., what algorithm is used to process the input and produce the output). We also
outline a number of problems concerning the datasets used in considered works, and �nally introduce the
novel concept of malware analysis economics, regarding the study of existing tradeo�s among key metrics,
such as analysis accuracy and economical costs.

CCS Concepts: •General and reference→ Surveys and overviews; •Social and professional topics→
Malware / spyware crime; •Computing methodologies→Machine learning; •Security and privacy
→ Economics of security and privacy;

Additional Key Words and Phrases: malware analysis, machine learning, malware analysis economics

ACM Reference format:
Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. 2017. Survey on the Usage of Machine Learning
Techniques for Malware Analysis. ACM Trans. Web 1, 1, Article 1 (October 2017), 34 pages.
DOI: 0000001.0000001

1 INTRODUCTION
Despite the signi�cant improvement of security defence mechanisms and their continuous evolution,
malware are still spreading and keeping to succeed in pursuing their malicious goals. Malware
analysis concerns the study of malicious samples with the aim of developing a deeper understanding
about several aspects of malware, including their behaviour, how they evolve over time, and how
they intrude speci�c targets. �e outcomes of malware analysis should allow security �rms to
update their defence solutions, in order to keep pace with malware evolution and consequently
prevent new security incidents.

Author’s addresses: D. Ucci, L. Aniello and R. Baldoni, Research Center of Cyber Intelligence and Information Security (CIS),
Department of Computer, Control, and Management Engineering “Antonio Ruberti”, “La Sapienza” University of Rome.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM. 1559-1131/2017/10-ART1 $15.00
DOI: 0000001.0000001

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:2 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

Within the unceasing arm race between malware developers and analysts, each progress of
security mechanisms is likely to be promptly followed by the realization of some evasion trick.
�e easiness of overcoming novel defensive measures also depends on how well they capture
malicious traits of samples. For example, a detection rule based on the MD5 hash of a known
malware can be easily eluded by applying standard obfuscation techniques, indeed they change the
binary of the malware, and thus its hash, but leave its behaviour unmodi�ed. On the other side,
developing detection rules that capture the semantics of a malicious sample is much more di�cult
to circumvent, as malware developers should apply more complex modi�cations.

Given the importance of producing defensive technologies as challenging as possible to over-
come for malware producers, a major goal for malware analysis should be to capture aspects and
traits having the broadest scope. In this way, resulting security measures would become harder
to circumvent, and consequently the e�ort for a�ackers to adapt existing malware would result
infeasible. Machine learning is a natural choice to support such a process of knowledge extraction.
�e plentiful availability of samples to analyse, and thus of really large training sets, has fostered
the adoption of machine learning for malware analysis. Indeed, many works in literature have
taken this direction, with a variety of approaches, objectives and obtained results.

�is survey aims at reviewing and systematising existing academic works where machine learning
is used to support malware analysis of Windows executables, i.e., Portable Executables (PEs). 57
recent papers have been reviewed, and their approaches have been systematised according to three
fundamental dimensions

• the speci�c objective of the presented malware analysis (i.e., the output),
• what types of features they consider (i.e., the input),
• what machine learning algorithms they consider.

Such a simple characterisation of academic works helps in understanding how machine learning
can be used within the context of malware analysis, so as to also identify possible novel relevant
objectives that have not been investigated yet. We distinguished 7 di�erent objectives: malware
detection, malware variants detection (variants selection and families selection), malware category de-
tection, malware novelty and similarity detection, malware development detection, malware a�ribution,
and malware triage.

�e review of the features that can be gathered from a sample provides a comprehensive view
of available information, and how they can be used with reference to identi�ed malware analysis
objectives. Smart combinations of these information can lead to extract additional knowledge to
be used to achieve further objectives or re�ne existing ones. We grouped the features used by
surveyed papers in 15 types: strings, byte sequences, opcodes, APIs/System calls, memory accesses,
�le system accesses, Windows registry, CPU registers, function length, PE �le characteristics, raised
exceptions, network, AV/Sandbox submissions, and code stylometry.

Examining used algorithms provides an e�ective overview about how selected inputs can be
processed to achieve a speci�c malware analysis objective. �e frequent employment of a particular
algorithm to achieve a given objective means that such algorithm is likely to be really e�ective
for that objective. On the other hand, observing that some class of algorithms has never been
used for a certain objective may suggest novel directions to investigate further. We arranged
algorithms in 4 classes: signature-based (malicious signature matching, malicious graph match-
ing), classi�cation (rule-based classi�er, Bayes classi�er, support vector machine, prototype-based
classi�cation, decision tree, k-Nearest neighbors, arti�cial neural network), clustering (clustering
with locality sensitive hashing, clustering with distance and similarity metrics, k-Means clustering,
density-based spatial clustering of applications with noise, hierarchical clustering, prototype-based

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:3

clustering, self-organizing maps), and others (expectation maximization, learning with local and
global consistency, belief propagation).

�e thorough study we have carried out has highlighted some interesting points that would
deserve to be dealt with in more detail, indeed we claim they can be developed to extend and
improve current academic research on the usage of machine learning for malware analysis.

A �rst point concerns a general lack of proper explanation about the reasons why a speci�c set
of features enables to properly characterise the malicious traits of samples. �e common approach
is to take all the available features, feed them to the chosen machine learning algorithms, and
compute accuracy metrics on obtained (usually good) results. Some works include a feature selection
phase where the subset of most determining features is extracted. Except for a few papers, the vast
majority does not delve into explaining the connection between considered features and achieved
results, which seems to leave the whole analysis rather incomplete. We advocate the need to
properly address this aspect whenever machine learning algorithms are used for malware analysis.

Another point regards the set of samples used for training and testing the chosen model. Most
of reviewed papers do not describe in detail the employed dataset, nor they share it publicly, which
prevents others from reproducing published results, and thus from properly comparing newly
proposed solutions. �is is obviously a signi�cant obstacle to streamlining advancements in the
�eld of malware analysis through machine learning. As a ma�er of fact, in other research areas
where reference benchmarks are available, it is easy to prove (and also to disprove) that a novel
technique is be�er than the state of the art, and thus to assert a progress. On the other hand,
establishing a benchmark of samples acknowledged by the academic malware analysis community
is extremely challenging. Indeed, benchmarks should be as stable as possible over time to be
used as reference points for measurements, but malware are characterized by a strong intrinsic
evolutionary nature. Novel and more advanced malicious samples are developed daily, hence each
malware becomes less interesting from a research perspective as time goes by. Despite this, we
believe that more e�ort should be spent along the direction of enabling researchers to reproduce
published results, and thus to correctly compare di�erent solutions. At this regard, we outline some
desired properties that a dataset of samples should have to become a valid reference for research
purposes.

A �nal point is about the novel concept of malware analysis economics. �e �nal purpose of
malware analysis is expanding the knowledge on malware, by the means of a learning process
continuous over time, whose e�ectiveness can be measured along two dimensions. �e �rst is
the pace of knowledge growth, which relates to how fast this knowledge develops with respect to
the evolution of malware over time. �e second is the accuracy of the knowledge, which refers
to the extent such knowledge matches the real characteristics of malware. Both pace and accu-
racy depend on several factors, some being hard to assess, others being easily measurable. When
machine learning comes into play, these quanti�able factors include how many novel samples
are considered, how many features are extracted from each sample, and what kinds of algorithms
are used. Having bigger datasets at disposal (i.e., large number of samples) generally leads to
learn more accurate malware knowledge, at the cost of greater e�ort for the collection, feature
extraction, and elaboration of a larger number of samples. Required time is likely to increase too,
which impacts negatively on the pace of malware knowledge growth. To keep this time as constant
as possible, more physical resources should be employed to parallelise to some extent the whole
malware analysis process, which in turn entails additional costs because of the higher provisioning
requested. What emerges is the existence of a trade-o� between the cost of the analysis from
one hand, and the growth pace and accuracy of acquired knowledge from the other. Analogous

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:4 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

trade-o�s also apply for what features are extracted from samples, and for what algorithms are used.
Since the costs of malware analysis could easily rise to una�ordable levels in an a�empt to achieve
the highest accuracy and the fastest growth of malware knowledge, a careful understanding of
the dynamics of such trade-o�s turns out to be highly strategic. �us, we claim the importance of
investigating thoroughly the relationships between what is required to improve the e�ectiveness of
malware analysis (i.e., growth pace and accuracy of obtained malware knowledge) and how much
it costs (i.e., in terms of time, realization complexity, and needed resources). �is would make it
possible to de�ne clear guidelines on se�ing up a malware analysis process able to meet speci�c
requirements on e�ectiveness at the minimum cost.

In literature, some works have already addressed the problem of surveying contributions dealing
with the usage of machine learning techniques for malware analysis. In [11], the authors analyse
scienti�c papers on malware detection only. �ey identify three main methods for detecting
malicious so�ware, based on signatures, behaviors, and machine learning techniques. Gandotra
et al. [29] survey papers that use machine learning techniques for malware analysis and only
distinguish between malware detection and family classi�cation. In [64], the authors focus on
papers proposing techniques based on pa�ern matching to recognize malware. Basu et al. examine
di�erent works relying on data mining and machine learning techniques, whose primary objective
is the detection of possibly malicious so�ware [9]. �e survey outlines the types of analysis that a
malware analyst can carry out and discusses di�erent types of inputs that can be potentially used
(e.g. byte sequences, opcodes, PE �le characteristics). Compared to our work, the above mentioned
surveys focus just on very few malware analysis objectives, and their studies are limited to the
descriptions of proposed approaches without any a�empt of structuring surveyed contributions.

At the time of writing, the most similar work to ours is the one published by LeDoux and
Lakhotia [47]. �eir article points out the problems related to malware analysis and how machine
learning can help in solving them. Similarly to our work, they provide a wider overview on machine
learning concepts, list a set of features useful for analysing malware, and state the complexity
of gathering a ground truth to evaluate analysis results. However, as �nal objective of malware
analysis, they only consider the timely detection, removal, and recovery from the infection, while
in this paper we identify 7 di�erent possible objectives.

�e rest of the paper is structured as follows. Section 2 introduces some basic notions on
malware analysis. Section 3 outlines the possible objectives of malware analysis, Section 4 delves
with what types of input data is used for the analysis, and Section 5 reports what machine learning
methods are employed. �e characterization of surveyed papers according to the inputs, outputs
and algorithms described in previous sections is reported in Section 6. Section 7 describes the
datasets used in each paper: it discusses sample collections and the issues related to experimental
evaluation reproducibility. Malware analysis economics are investigated in Section 8. Finally,
conclusions and possible future works are presented in Section 9.

2 BACKGROUND ONMALWARE ANALYSIS
With malware analysis, we refer to the process of studying a generic sample (i.e., a �le), with the aim
of acquiring knowledge about its potentially malicious nature. �e analysis of a sample includes
an initial phase where required data are extracted from the �le, and an elaboration phase where
these data are examined, and possibly correlated to some available knowledge base, to gain further
added-value information. What information are mined depend on the speci�c objective to achieve.
In the works considered in this survey, the information extraction process is performed through
either static or dynamic analysis, or a combination of both, while examination and correlation

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:5

are carried out by using machine learning techniques. Approaches based on static analysis look
at the content of samples without requiring their execution, while dynamic analysis works by
running samples to examine their behaviour. Execution traces are indeed among the inputs used
in examination and correlation phases when dynamic analysis is employed. For an extensive
dissertation on dynamic analyses, refer to [22].

Malware development strategies are in line with so�ware engineering recommendations for what
concerns code reuse, in the sense that any speci�c malware is usually updated to the minimal extent
required to evade latest detection techniques. Indeed, as a new malware is discovered by security
�rms and then neutralised by releasing the correspondent antivirus detection rule (e.g., its signature)
or so�ware patch, malware developers are likely to produce a variant of that malware, which keeps
most of the code and characteristics of the original version but di�ers for a few aspects to guarantee
its e�ectiveness in evading current recognition mechanisms. �ese mechanisms are commonly
evaded by employing obfuscation and encryption techniques to automatically generate variants.
�ese variants are referred to as polymorphic and metamorphic malware. Polymorphism changes the
appearance of the original malicious code by means of encryption and data appending/prepending.
�ese modi�cations are performed by mutation engines, usually bundled within the malware itself.
�e limitation of this variant generation approach is that malware code remains the same once
decrypted by a mutation engine, which makes in-memory signature-based detection methods
e�ective. On the other hand, metamorphic malware can still evade these recognition mechanisms
thanks to more advanced morphing techniques. �ese include insertion of a number of No Operation
(NOP) and garbage instructions, function reordering, control �ow modi�cation, and variation in
data structure usage. Malicious so�ware exploiting metamorphism automatically recodes itself
before propagating or being redistributed by the a�acker. �is kind of variants can be detected by
focussing on the semantics of an executable.

Variants originating from a same “root” malware are usually grouped in a malware family, which
by consequence includes a set of samples sharing many similarities, yet being di�erent enough
among each other from the point of view of anti-malware tools.

3 MALWARE ANALYSIS OBJECTIVES
�is section details the analysis goals of the surveyed papers, organized in 7 distinct objectives.

3.1 Malware Detection
�e most common objective in the context of malware analysis is detecting whether a given sample
is malicious. From a practical point of view, this objective is also the most important because
knowing in advance that a sample is dangerous allows preventing it from being harmful for a system.
Indeed, the majority of reviewed works has this as main goal [3, 4, 7, 15, 24, 25, 27, 28, 32, 42, 44, 66–
68, 72, 73, 76, 78, 80, 81]. According to the speci�c machine learning technique employed into
the detection process, the output generated by the analysis can be provided with a con�dence
value. �e higher this value, the more the output of the analysis is likely to be correct. Hence, the
con�dence value can be used by malware analysts to understand if a sample under analysis needs
further inspection.

3.2 Malware Variants Detection
Developing variants is one of the most e�ective and cheapest strategies for an a�acker to evade
detection mechanisms, while reusing as much as possible already available codes and resources.
Recognizing that a sample is actually a variant of a known malware prevents such strategy to
succeed, and paves the way to understand how malware evolve over time through the continuous

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:6 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

development of new variants. Also this objective has been deeply studied in literature, and several
papers included in this survey target the detection of variants. More speci�cally, we identify two
slightly di�erent variations of this objective

• variants selection: given a malicious samplem, select from the available knowledge base
the samples that are variants of m [17, 31, 32, 40, 45, 49, 70, 75, 77]. Variants of a malicious
samples can be obtained by employing metamorphism and polymorphism (see Section 2).
Considering the huge number of malicious samples received daily from major security
�rms, recognizing variants of already known malware is crucial to reduce the workload for
human analysts;
• families selection: given a malicious samplem, select from the available knowledge base the

families that m belongs to [1, 19, 34–36, 39, 43, 48, 50, 54–56, 58]. In this way, it is possible
to associate unknown samples to already known families, and by consequence provide an
added-value information for further analyses.

3.3 Malware Category Detection
Malware can be categorized according to their prominent behaviours and objectives. As an example,
malicious so�ware can be interested in spying on users’ activities and stealing their sensitive
information (i.e., spyware), encrypting documents and asking for a ransom in some cryptocurrency
(i.e., ransomware), or gaining remote control of an infected machine (i.e., remote access trojans).
Even if more sophisticated malware �t more behaviours and objectives, using these categories is a
coarse-grained yet signi�cant way of describing malicious samples [16, 18, 69, 71, 74]. Although
cyber security �rms have not still agreed upon a standardized taxonomy of malware categories,
e�ectively recognizing the categories of a sample can add valuable information for the analysis.

3.4 Malware Novelty and Similarity Detection
Along the line of acquiring knowledge about unknown samples by comparing them against known
malware, it is really interesting to identify what are the speci�c similarities and di�erences of the
binaries to analyse with respect to those already analysed and stored in the knowledge base. We
can distinguish between two distinct types of novelty and similarity detection.

• similarities detection: discovering what parts and aspects of a sample are similar to some-
thing that has been already examined in the past enables to focus on what is really new,
and hence to discard the rest as it does not deserve further investigation [8, 10, 23, 57, 61].
• di�erences detection: as a complement, also identifying what is di�erent from everything

that has been observed in the past results worthwhile. As a ma�er of fact, di�erences can
guide towards discovering novel aspects that should be analysed more in depth [10, 51, 57,
59, 61, 65].

3.5 Malware Development Detection
An undeniable advantage for malware developers is the wide availability of the most used defence
mechanisms, such as antiviruses, sandboxes, and online scanning services. Indeed, these tools
can be used to test the evasion capabilities of the samples being developed. �e la�er can be
consequently re�ned to avoid being detected by speci�c technologies, which can also depend on
the actual targets of the a�ackers. Malware analysts can leverage this practice by analysing the
submissions of samples to online services, like VirusTotal and public sandboxes, in order to identify
those submissions that seem related to the test of novel malware [16, 33]. In particular, by analysing
submissions and their metadata, researchers found out that malicious samples involved in famous
targeted a�acks, have been previously submi�ed to Anubis Sandbox [33].

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:7

3.6 Malware A�ribution
Another aspect malware analysts are interested in regards the identi�cation of who developed
a given malware [14]. Anytime a cyber threat is detected, a three-level analysis can be carried
out: technical, operational, and strategic. From a technical perspective, a malware analyst looks at
speci�c indicators of the executable: what programming language has been used, if it contains any
IP address or URL, and the language of comments and resources. Another distinctive trait, in case
the malware exchanges messages with a command and control center, is the time slot where the
a�acker triggers the malware. �e operational analysis consists in correlating technical information
related to other cyber threats that share similarities with the malicious sample under analysis.
During the strategic analysis, extracted technical and operational knowledge can be merged with
intelligence information and political evaluations in the a�empt of a�ributing a (set of) malware
sample(s) to a cyber threat actor or group.

3.7 Malware Triage
A last objective addresses the need to provide a fast and accurate prioritization for new samples
when they come at a fast rate and have to be analysed. �is process is referred to as triage, and is
becoming relevant because of the growing volume of new samples developed daily. Malware triage
shares some aspects with the detection of variants, novelties and similarities, since they give key
information to support the prioritization process. Nevertheless, triage should be considered as a
di�erent objective because it requires faster execution at the cost of possible worse accuracy, hence
di�erent techniques are usually employed [37].

4 MALWARE ANALYSIS FEATURES
�is section provides an overview on the data used by reviewed papers to achieve the objectives
outlined in Section 3. �e features given as input to machine learning algorithms derive from these
data. Since almost all the works we examined considered Windows executables, the inputs taken
into account are extracted from the content of the PEs themselves or from traces and logs related
to their execution.

In many cases, surveyed works only refer to macro-classes without mentioning the speci�c
features they employed. As an example, when n-grams are used, only a minority of works mention
the size of n. Whenever possible, for each feature type we provide a table reporting what speci�c
features are used, with proper references.

4.1 Strings
A PE can be inspected to explicitly look for the strings it contains, such as code fragments, author
signatures, �le names, system resource information. �ese types of strings have been shown [68]
to provide valuable information for the malware analysis process (see Table 1). Once strings in
clear are extracted, it is possible to gather information like number and presence of speci�c strings,
which can unveil key cues to gain additional knowledge on a PE [36, 68]. In [1], the authors use
histograms representing how string lengths are distributed in the sample.
String extraction tools. Strings1 and pedump2 are two well-known tools for extracting strings from a
PE. While pedump outputs the list of the strings found in a Windows executable, Strings allows to
use wild-card expressions and tune search parameters. Conversely to Strings, pedump is able to
detect most common packers, hence it can be also used when the PE is packed. Both tools fail if

1Strings: h�ps://technet.microso�.com/en-us/sysinternals/strings.aspx
2pedump: h�ps://github.com/zed-0x�/pedump

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://github.com/zed-0xff/pedump

1:8 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

the strings contained in the executable are obfuscated. Another remarkable tool is FLOSS3, which
combines di�erent static analysis techniques to deal with obfuscated string found in analysed
samples.

Table 1. List of features employed in the surveyed papers for the input type Strings

Strings

Number of strings; presence of “GetProcAddress”,“CopyMemory”, “CreateFileW”, “OpenFile”,
“FindFirstFileA”, “FindNextFileA”, “Reg�eryValueExW” [36]

Distribution of string lengths [1]

4.2 Byte sequences
A binary can be characterised by computing features on its byte-level content. Analysing the
speci�c sequences of bytes in a PE is a widely employed technique (see Table 2). A few works use
chunks of bytes of speci�c sizes [68, 72], while many others rely on n-grams [1, 3, 4, 15, 19, 27, 37,
42, 50, 61, 69, 72, 75, 76, 80].

An n-gram is a sequence of n bytes, and features correspond to the di�erent combination of
these n bytes, namely each feature represents how many times a speci�c combination of n bytes
occurs in the binary. Di�erent works use n-grams of diverse sizes. Most of them rely on sequences
no longer than 3 (i.e., trigrams). Indeed, the number of features to consider grows exponentially
with n.

Table 2. List of features employed in the surveyed papers for the input type Byte sequences

Byte sequences

Chunks either of 50, 100 KB, or equal to �le size [72]
1-grams [1, 50, 72]

2-grams [3, 4, 50, 69, 72]
3-grams [19, 36, 50, 72]

4-grams [50, 76]
5-grams, 6-grams [50]

4.3 Opcodes
Opcodes identify the machine-level operations executed by a PE, and can be extracted by examining
the assembly code [1, 3, 4, 31, 34, 40, 43, 56, 65, 66, 69–72]. As shown in Table 3, opcode frequency
is a type of feature employed in some surveyed papers. It measures the number of times each
speci�c opcode appears within the assembly of, or it is executed by, a PE [40]. Others [4, 40] count
opcode occurrences by aggregating them by operation scope, e.g., math instructions, memory
access instructions. Similarly to n-grams, also sequences of opcodes are used as features [31, 40, 72].
Given the executable, the Interactive DisAssembler4 (IDA) is the most popular commercial solution
that allows the extraction of the assembly code.

3FireEye Labs Obfuscated Strings Solver (FLOSS): h�ps://github.com/�reeye/�are-�oss
4Interactive DisAssembler: h�ps://www.hex-rays.com/products/ida/index.shtml

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

https://github.com/fireeye/flare-floss
https://www.hex-rays.com/products/ida/index.shtml

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:9

Table 3. List of features employed in the surveyed papers for the input type Opcodes

Opcodes

Branch instruction, count, privileged instruction count, and memory instruction count [4]
Math instruction count, logic instruction count, stack instruction count, NOP instruction count, and other

instruction count [4, 40]
Sequences of length 1 and 2 [65]
Instruction frequencies [1, 40]

Data de�ne instruction proportions [1]
Count of instructions manipulating a single-bit, data transfer instruction count, data conversion

instruction count, pointer-related instruction count, compare instruction count, jump instruction count,
I/O instruction count, and set byte on conditional instruction count [40]

4.4 APIs/System calls
Similarly to opcodes, APIs and system calls enable the analysis of samples’ behaviour, but at a
higher level (see Table 4). �ey can be extracted by analysing either the disassembly code (to get
the list of all calls that can be potentially executed) or the execution traces (for the list of calls
actually invoked). While APIs allow to characterise in general what actions are executed by a
sample [1, 7, 23, 36, 39, 43, 49, 70], looking at system call invocations provides a speci�c view on
the interaction of the PE with the operating system [4, 6, 10, 19, 23, 24, 45, 48, 57, 58, 61, 66, 76].
Data extracted by observing APIs and system calls can be really large, and many works carry out
additional processing to reduce feature space by using convenient data structures. Next subsections
give an overview on the data structures used in surveyed papers.

Table 4. List of features employed in the surveyed papers for the input type APIs/System calls

APIs/System calls

Process spawning [8, 17, 51]
Syscall dependencies [10, 24, 57]
Syscall sequences [6, 45, 58, 76]

MIST representation [61]
“RegOpenKeyEx” count, “RegOpenKeyExW” count, “Reg�eryValueExW” count, “Compositing” count,

“MessageBoxW” count, “LoadLibraryW” count, “LoadLibrary- ExW” count, “0x54” count [36]
Referred APIs count, Referred DDLs count [7]

Process activity [50]
Is API ‘x’ present in the analysed sample? [39]

4.4.1 Call graphs and data dependent call graphs. Call graphs allow to analyse how data is
exchanged among procedure calls [63] by storing relationships among these procedures, and
possibly including additional information on variables and parameters. Call graphs have been
employed in [24, 33, 43, 45] to extract relationships among invoked functions. API call graphs have
been subsequently extended in [17, 24, 58] by integrating data dependencies among APIs. Formally,
two API calls are data dependent if the one invoked a�erwards uses a parameter given in input to
the other.

4.4.2 Control flow graphs, enriched control flow graphs, and quantitative data flow graphs. Control
�ow graphs allow compilers to produce an optimized version of the program itself [2]. Each graph
models control �ow relationships which can be used to represent the behaviour of a PE and extract

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:10 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

the program structure. Works employing control �ow graphs for sample analysis are [4, 17, 33]. In
[25], graph nodes are enriched with dynamic analysis information for deciding if conditional jumps
are actually executed.Wüchner et al. [80] use quantitative data �ow graphs to model the amount of
data �owing among system resources. Analogously, Polino et al. leverage data �ow analysis in
order to track data dependencies and control operations in main memory [59].

4.4.3 Multilayer dependency chains. Represent function templates organized according sample
behaviors [49]. Stored into di�erent chains, function templates are characterized by six sub-
behaviors capturing interactions between samples and the system in which they run. In turn, each
chain contains a complete sequence of API calls invoked by a sample, along with API call metadata.
All these information provide analysts a more detailed characterization of malware behavior.

4.4.4 Causal dependency graphs. �ey have been initially proposed by [8] for tracking the
activities of a malware by monitoring persistent state changes in the target system. �ese persistent
state changes enable to de�ne malware behaviour pro�les and recognize classes of malware
exhibiting similar behaviours. In [43], causal dependency graphs are used to discover the entry
point exploited by an a�acker to gain access to a system.

4.4.5 Markov chains and Hidden Markov Models. Markov chains are memoryless random pro-
cesses evolving with time. In [3, 4, 69], Markov chains are used to model binary content and
execution traces of a sample to perform malware classi�cation. Similarly to the approach designed
in [25] for building enriched data �ow graphs, instructions are categorized in 8 coarse-grained
classes (e.g., math and logic instructions).

Hidden Markov models are probabilistic functions of Markov chains. States of hidden Markov
models are unobservable, while the output of a state can be observed and it obeys to a probabilistic
distribution (continuous or discrete). Pai et al. train various hidden Markov models having 2 hidden
states, to recognize malware belonging to speci�c families [56].

4.5 Memory accesses
Any data of interest such as user generated content, Windows Registry key, con�guration and
network activity passes through main memory, hence analysing how memory is accessed can reveal
important information about the behaviour of an executable [60] (see Table 5). Some works [43, 70]
either rely on Virtual Machine Monitoring and Introspection techniques, or statically trace reads
and writes in main memory. Egele et al. dynamically trace values read from and wri�en to stack
and heap [23].
Memory analysis tools. Di�erent open-source tools are available to analyse memory during sample
executions, such as Volatility5 and Rekall6, both included in the SANS Investigative Forensic
Toolkit7.

Table 5. List of features employed in the surveyed papers for the input typeMemory accesses

Memory accesses

Performed read and write operations in main memory [43]
Values read/wri�en from/to stack and heap [23]

5Volatility: h�p://www.volatilityfoundation.org/25
6Rekall: h�p://www.rekall-forensic.com/pages/at a glance.html
7SIFT: h�ps://digital-forensics.sans.org/community/downloads

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

http://www.volatilityfoundation.org/25
http://www.rekall-forensic.com/pages/at_a_glance.html
https://digital-forensics.sans.org/community/downloads

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:11

4.6 File system accesses
What samples do with �les is fundamental to grasp evidence about the interaction with the
environment and possible a�empts to gain persistence. Features of interest mainly concern how
many �les are read or modi�ed, what type of �les and in what directories [8, 17, 33, 43, 48, 50, 54]
(see Table 6). Sandboxes and memory analysis toolkits include modules for monitoring interactions
with the �le system, usually modelled by counting the number of �les created/deleted/modi�ed by
the PE under analysis. In [54], the size of these �les is considered as well, while Lin et al. leverage
the number of created hidden �les [50].
File System analysis tools. Activities performed on �le system can be monitored using programs
like MS Windows Process Monitor8 and SysAnalyzer9. While SysAnalyzer implements by default
snapshots over a user-de�ned time interval to reduce the amount of data presented to malware
analysts, Process Monitor has been designed for real-time monitoring. Nevertheless, SysAnalyzer
can be also used in live-logging mode. ProcDOT10 allows the integration of Process Monitor with
network traces, produced by standard network sni�ers (e.g. Windump), and provides an interactive
visual analytics tool to analyse the binary activity.

Table 6. List of features employed in the surveyed papers for the input type File system accesses

File system accesses

Number of created/deleted/modi�ed �les, size of created �les [54]
Number of created hidden �les [50]

4.7 Windows Registry
�e registry is one of the main sources of information for a PE about the environment, and also
represents a fundamental tool to hook into the operating system, for example to gain persistence.
Discovering what keys are queried, created, deleted and modi�ed can shed light on many signi�cant
characteristics of a sample [48, 50, 54, 70] (see Table 7). Usually, works relying on �le system inputs
(see Section 4.6) monitor also the Windows Registry. In [70], changes to �le system are used in
conjunction with �le system accesses.
Windows Registry analysis tools. Process Monitor, introduced in Section 4.6, takes also care of
detecting changes to the Windows Registry. Similarly, RegShot11 is an open-source lightweight
so�ware for examining variations in the Windows Registry by taking a snapshot before and a�er
the sample is executed. Since it is based on snapshots, malware analysts are not overwhelmed with
data belonging to the entire execution of the samples. As mentioned for memory and �le system
accesses, usually, sandboxes monitor Windows Registry key creations/deletions/modi�cations,
reporting occurred changes.

Table 7. List of features employed in the surveyed papers for the input typeWindows Registry

Windows Registry

Number of created/deleted/modi�ed Registry keys [48, 50, 54, 70]

8Process Monitor: h�ps://docs.microso�.com/en-us/sysinternals/downloads/procmon
9SysAnalyzer: h�p://sandsprite.com/iDef/SysAnalyzer/
10ProcDOT: h�p://www.procdot.com
11RegShot: h�ps://sourceforge.net/projects/regshot/

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
http://sandsprite.com/iDef/SysAnalyzer/
http://www.procdot.com
https://sourceforge.net/projects/regshot/

1:12 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

4.8 CPU registers
�e way CPU registers are used can also be a valuable indication, including whether any hidden
register is used, and what values are stored in the registers, especially in the FLAGS register (see
Table 8). Both [43] and [1] rely on static analysis of registers, whereas [23] and [32] employ a
dynamic approach. Some works examine register use to detect malware variants [1, 32, 43]. While
in [43] and [1] the objective is to identify samples belonging to one or more speci�c families, [32]
aims to select the variants of the malware under analysis. Static analyses of CPU registers involve
counting reads and writes performed on each register [43], tracking the number of changes to
FLAGS [43], and measuring the frequency of register usage [1]. Conversely, [32] applies dynamic
analysis to get features associated to the values contained in CPU registers. Instead, [23] monitors
only returned values with the objective of detecting similarities among executables.

Table 8. List of features employed in the surveyed papers for the input type CPU registers

Registers

No. of changes to FLAGS register, register read/write count [43]
Returned values in the eax register upon function completion [23]

Registers usage frequency [1]
Registers values [32]

4.9 Function length
Another characterising feature is the length of functions. In particular, the frequency of function
lengths is used [17] (see Table 9). �is input alone is not su�cient to discriminate malicious
executables from benign so�ware, indeed it is usually employed in conjunction with other features.
�is idea, formulated in [74], is adopted in [36], where function length frequencies are combined
with other static and dynamic features.

Table 9. List of features employed in the surveyed papers for the input type Function length

Function length

Function length frequencies [36]
Linearly/polynomially/exponentially spaced bins of length ranges [17]

4.10 PE file characteristics
A static analysis of a PE can provide a large set of valuable information such as sections, imports,
symbols, used compilers (see Table 10). As malware generally present slight di�erences with respect
to benign PEs, these information can be used to understand if a �le is malicious or not [6, 7, 48, 81].

4.11 Raised exceptions
�e analysis of the exceptions raised during the execution can help understanding what strategies a
malware adopts to evade analysis systems [6, 66]. A common trick to deceive analysts is throwing
an exception to run a malicious handler, registered at the beginning of malware execution. In this
way, examining the control �ow becomes much more complex. �is is the case of the Andromeda

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:13

Table 10. List of features employed in the surveyed papers for the input type PE file characteristics

PE �le characteristics

Resource icon’s checksum [6, 48]
Number of symbols, pointer to symbol table, PE timestamp, and PE characteristics �ags [81]

Section count [7, 81]
Resource’s directory table, items in .reloc section count and symbols in export table count [7]

Disassembled �le size, sample size, number of lines in the disassembled �le, �rst bytes sequence address,
entropy, and symbol frequencies [1]

PE header checksum, resource strings’ checksum, resource metadata checksum, section names, section
sizes, import table location, import table size, and entry point o�set [6]

Section a�ributes [1, 6]

botnet, version 2.0812. Even if such version is outdated, Andromeda is still active and targets victims
with spam campaigns13.

4.12 Network
A huge number of key information can be obtained by observing how the PE interacts with the
network. Contacted addresses, generated tra�c, and received packets can unveil valuable aspects,
e.g., regarding communications with a command and control center. Statistics on used protocols,
TCP/UDP ports, HTTP requests, DNS-level interactions are other features of this type (see Table 11).
Many surveyed works require dynamic analysis to extract this kind of information [8, 10, 17,
33, 48, 49, 51, 54, 55]. Other papers extract network-related inputs by monitoring the network
and analysing incoming and outgoing tra�c [18, 44, 77]. A complementary approach consists in
analysing download pa�erns of network users in a monitored network [78]. It does not require
sample execution and focuses on network features related to the download of a sample, such as the
website from which the �le has been downloaded.

Table 11. List of features employed in the surveyed papers for the input type Network

Network

Connection count [8, 33, 54]
TCP �ags, packet direction, total packets count, total packets with no-payload count, total transferred byte
count, total transferred payload byte count, �ow duration, average inter arrival time, size of i-th packet,

inter arrival time of i-th packet, payload size of i-th packet, maximum payload size, minimum payload size,
average payload size, payload size standard deviation, maximum packet size, minimum packet size,

average packet size, and packet size standard deviation [55]
Download domain, download history, download request, and queried URLs [78]

Destination IP [44, 78]
Timestamp [44]

Unique IP count, protocol type, HTTP request/response type count, DNS A/PTR/CNAME/MX/NS/SOA record
lookup count, request/response packet size [54]

12New Anti-Analysis Tricks In Andromeda 2.08: h�ps://blog.fortinet.com/2014/05/19/
new-anti-analysis-tricks-in-andromeda-2-08
13Andromeda Botnet Targets Italy in Recent Spam Campaigns: h�p://researchcenter.paloaltonetworks.com/2016/07/
unit42-andromeda-botnet-targets-italy-in-recent-spam-campaigns/

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

https://blog.fortinet.com/2014/05/19/new-anti-analysis-tricks-in-andromeda-2-08
https://blog.fortinet.com/2014/05/19/new-anti-analysis-tricks-in-andromeda-2-08
http://researchcenter.paloaltonetworks.com/2016/07/unit42-andromeda-botnet-targets-italy-in-recent-spam-campaigns/
http://researchcenter.paloaltonetworks.com/2016/07/unit42-andromeda-botnet-targets-italy-in-recent-spam-campaigns/

1:14 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

4.13 AV/Sandbox submissions
Malware developers may use online public services like VirusTotal14 and Malwr15 to test the ef-
fectiveness of their samples in evading most common antiviruses. �erying these online services
can provide additional information useful for the analysis: submission time, how many online
antiviruses classify the same as malicious, and other data on the submission (see Table 12). Graziano
et al. [33] leverage submissions to a sandbox for identifying cases of malware development. Sur-
prisingly, samples used in infamous targeted campaigns have been found to be submi�ed to public
sandboxes months or years before.

Table 12. List of features employed in the surveyed papers for the input type AV/Sandbox submissions

AV/Sandbox submissions

Occurred errors [6, 33, 66]
Created hidden �les/registries, hidden connections, process/�le activity, frequencies of speci�c words in

the AV/Sandbox report [33, 50]
Count of registry types and registries modi�cations [33, 54]

PE �le characteristics, timestamps, AV labels, submi�ing user information, and sandbox analysis
results [33]

4.14 Code stylometry
Features related to the coding style used by an anonymous malware author can reveal important
details about her identity. Unfortunately, this kind of features requires the availability of source
code, which is very rare in malware analysis. However, in case of leaks and/or public disclosures,
source codes can become available. In [14], the author’s coding style of a generic so�ware (i.e. not
necessarily malicious) is captured through syntactic, lexical, and layout features (see Table 13).
�ese are extracted both from the source code and from the abstract syntax tree, representing the
executable. Syntactic features model keywords and the properties of the abstract syntax tree, while
lexical and layout features allow to gather information about author’s code writing preferences.

Table 13. List of features employed in the surveyed papers for the input type Code stylometry

Code stylometry

Source code’s lexical, layout, and syntactic properties [14]

5 MALWARE ANALYSIS ALGORITHMS
In this section we brie�y describe the machine learning algorithms used by reviewed papers.
Di�erent algorithms aim at a di�erent goals, e.g., �nding a match with respect to some available
knowledge base, or classifying samples by assigning them labels, or clustering PEs on the basis of
some metrics. We accordingly organize malware analysis algorithms in four categories: signature-
based (Section 5.1), classi�cation (Section 5.2), clustering (Section 5.3), and others (Section 5.4).

14VirusTotal: h�ps://www.virustotal.com
15Malwr: h�ps://malwr.com

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

https://www.virustotal.com
https://malwr.com

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:15

5.1 Signature-based
Signature-based approaches are widely employed by commercial antiviruses to detect malicious
samples. Signatures are computed by so�ware analysts to �nd a pa�ern in potentially malicious
samples under analysis. Found pa�erns should be also general enough to detect variants of the
same malware. Obviously this task, performed by humans, is error-prone and time-consuming [21].
Moreover, due to the generality of pa�erns found by malware analysts, signature-based approaches
su�er from a non-negligible of false positives. However, many surveyed works propose to extract
signatures from call graphs, control �ow graphs, and behavior pro�les.

5.1.1 Malicious signature matching. Malicious signature matching approaches can be divided
into two phases. First, malware signatures are collected inside a knowledge base (KB). In the second
phase, signatures extracted samples to analyse are compared with those in the KB. If one or more
matches are found, the consequence depends on the objective of the analysis, e.g., samples are
marked as malicious, or are assigned a speci�c label. Malicious signature matching has been used
both for malware detection in [27] and malware variants selection in [45] and [70].

5.1.2 Malicious graph matching. Signatures can be also computed from the graphs representing
speci�c features or behaviours of the sample under analysis. Similarly to malicious signature
matching, these approaches need an initial phase where graph representations are extracted from
a dataset of samples and stored in the KB. �e matching procedure, instead, varies from work to
work. As an example, while in [24] signatures are extracted from data dependent call graphs (see
Section 4.4.1) transformed into strings, Park et al. measure the similarity among data dependent
graphs by calculating the maximal common subgraph distance [58]. Similarly to Park et al., [45]
represent samples behaviour with graphs as well and matching is performed by XORing matrix
representations of behavioural graphs. Malicious graph matching is applied also in [70] to generate
evasion-resistant signatures.

5.2 Classification
Classi�cation is the task of assigning an observation to a speci�c category and it is performed
through a statistical model called classi�er. A classi�er takes as input a vector of features represent-
ing measurable properties of an observation. In the following, several classi�er implementations
are discussed.

5.2.1 Rule-based classifier. Rule-based classi�cation relies on a set of conditions consisting in
a series of tests that, if successfully passed, allow the classi�er to label the instances accordingly.
�ese tests can be connected by logical conjunctions or more general logical expressions [79], as
in [68] and [27]. Conditions can be also applied for modelling similarity [32, 49, 69] and distance
thresholds exceeding [74], as well as scores. To this end, Lindorfer et al. use a rule-base classi�er to
compute the probability that a sample implements evasion techniques [51].

5.2.2 Bayes Classifier. Bayesian models are usually employed for document classi�cation. Given
a document and a �xed set of classes, Bayesian models outputs the predicted class of the document
in input. Bayesian models perform best when features are completely independent, boolean, and
not redundant. �e more the redundant features, the more the classi�cation is biased towards such
features. Many surveyed works apply Bayesian models to malware analysis [39, 65, 66, 76, 80].

Naı̈ve Bayes. �e naı̈ve Bayes classi�er is the simplest among the probabilistic Bayes models. It
assumes strong independence among features and normal distribution on feature values. While the
�rst assumption can be modi�ed by using other probability distributions (e.g. Bernoulli), the la�er

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:16 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

needs to hold to avoid compromising classi�cation results. [28, 39, 42, 68, 69, 76, 80] employ Naı̈ve
Bayes for analysing malware.

Bayesian Network. Conversely to naı̈ve Bayes classi�ers, Bayesian networks provide a tool for
graphically representing probability distributions in a concise way [79]. Bayesian networks can
be drawn as directed acyclic graphs, where nodes represent features and categories, while edges
describe conditional dependence between nodes. Nodes are data structures storing a probability
distribution over represented feature values. �ese probabilistic graphical models have been used
in [25, 65, 66].

5.2.3 Support Vector Machine (SVM). Support vector machines are binary classi�ers employed in
a wide range of application �elds ranging from control theory, medicine, biology, pa�ern recognition,
and information security. In malware analysis, support vector machines have been applied in a
large number of surveyed papers [1, 3, 16, 18, 27, 28, 36, 39, 42–44, 50, 54, 65, 66, 69, 76, 80]. In [23],
SVM is employed to compute the optimal weights to associate to used features. �ese classi�ers
are able to deal with high-dimensional and sparse data [44]. In order to work with non-linearly
separable data, support vector machines rely on kernel methods. Support vector machines are
usually bundled with three default kernel functions: polynomial, sigmoid, and radial basis function.

5.2.4 Multiple Kernel Learning. Instead of using a single kernel, multiple kernel learning com-
bines di�erent kernel functions to classify observations. Chosen kernels may either capture
complementary aspects of observations under analysis or aggregate features coming from di�erent
sources [30]. In [4], Anderson et al. combine six kernels, each one corresponding to a di�erent data
source (e.g. PE �le information, system calls), and leverage multiple kernel learning for detecting
malicious samples.

5.2.5 Prototype-based Classification. �is approach relies on the concept of prototypes. �ey
correspond to malware activity reports output by sandboxes or obtained by emulators, virtual or
physical machines provided with monitoring tools. In [61], malware activity is extracted by means
of system calls and by converting them in feature vectors. As discussed in Section 4.4, system calls
are representative of samples behaviour. A prototype combines all the feature vectors in groups
of homogeneous behaviours, according to the available reports. In the same work, Rieck et al.
propose an approximation algorithm for extracting prototypes from a dataset of malware activity
reports. Classi�cation is performed by extracting the prototype from the sample under analysis
and computing its nearest prototype in the dataset. �e distance between prototypes is measured
by using the Euclidean distance.

5.2.6 Decision Tree. Decision tree classi�ers are widely employed in many �elds. In general,
nodes are meant for testing input features against some learned threshold [79]. One of the main
strength of decision trees is that they can be trained using boolean, numeric, or nominal features.
During the test phase, feature values guide the path to follow along the tree until a leaf node
is reached. �e speci�c instance is classi�ed according to the category assigned to such leaf.
In malware analysis, observations are typically related to samples. Works using decision trees
are [7, 28, 36, 39, 40, 42, 54, 55, 65, 66, 71, 72, 76]. Interestingly, decision trees can be reduced
to rule-based classi�ers (see 5.2.1). Indeed, every path in the tree leading to a leaf node can be
represented as a set of rules logically in “AND”.

Random Forest. �ese classi�ers are ensembles of decision trees, each fed with feature values
independently sampled using the same distribution for all trees [13]. Usually classi�er ensembles
are obtained by means of bagging, boosting, and randomization. Random forest uses bagging

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:17

since it introduces randomness in the choice of the features to take into account. Random forest
classi�ers have been applied in [1, 18, 36, 39, 40, 71, 76, 80].

Gradient Boosting Decision Tree. Conversely to random forest classi�ers, gradient boosting
decision trees are tree ensembles built by using the boosting technique. �ey aim to minimize the
expected value of a speci�ed loss function on a training set. In [16] and [69], gradient boosting
decision trees are used to detect the category of malicious samples.

Logistic Model Tree. Logistic model tree classi�ers are decision trees having logistic regression
models at their leaves. �ese models are linear and built on independent variables, representing the
considered classes, weighted on the basis of the samples in the training set. Weights are computed
by maximizing the log-likelihood. Graziano et al. employ logistic model trees for analysing malware
submi�ed to a public sandbox [33], whereas [19, 57, 69] leverage logistic regression classi�ers to
detect, respectively, families of malware, their categories, and novelties or similarities with respect
to other samples.

5.2.7 k-Nearest Neighbors (k-NN). For each labeledd-length feature vector contained in a training
set of size n, a k-NN algorithm transforms them in d-dimensional points. Labels can, for example,
report if a sample is malicious or benign. In the test phase, given a m-size dataset of samples
under analysis, these are transformed into d-dimensional points to �nd what are their k nearest
neighbours by means of a distance or similarity measure (e.g., Euclidean distance). Categories of
unknown instances are chosen by picking the most popular class among them. �e main advantage
of these classi�ers is that they require short training times. Using a worst-case analysis model, the
time required to train a k-Nearest Neighbor classi�er is Θ (n · d). �e test phase has Θ (m · n · d)
time complexity [52]. Classic implementations of k-Nearest Neighbor can be further re�ned to
improve their running time to logarithmic by employing KD-tree data structures.

5.2.8 Artificial Neural Network. Neural networks are computing systems formed by a set of
highly interconnected processing units organized in layers. Each processing unit has an activation
function and is linked to other units by means of weighted connections that are modi�ed according
to a speci�ed learning rule. Arti�cial neural networks are widely employed in pa�ern recognition
and novelty detection, time series prediction, and in medical diagnoses. �ey perform best if the
system they model is error-tolerant and can be helpful when the relationships among inputs are not
clear or di�cult to describe with other models. Limitations strongly depend on the used activation
function and applied learning rule. Dahl et al. take advantage of neural networks for detecting
malware families, with unsatisfactory results [19].

Multilayer Perceptron Neural Network. Multilayer Perceptrons are neural networks whose con-
nections are acyclic and each layer is fully connected with the next one. For this reason, they can
be represented through directed graphs. �ese classi�ers employ non-linear activation functions
and, in the training phase, use backpropagation. In [28], Multilayer Perceptron Neural Networks
are used for detecting malware.

5.3 Clustering
Clustering is the process of grouping similar elements. �e ideal clustering should arrange similar
elements together and they should be distant from other groups, also called clusters. �e notion of
distance is de�ned according speci�c distance or similarity metrics. Clustering methods can be
divided into hierarchical, partitioning, so�-computing, density-based, and model-based [62].

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:18 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

5.3.1 Clustering with locality sensitive hashing. Local sensitive hashing is a dimensionality
reduction technique for approximating clusters and neighbor search. It relies on locality-sensitive
hash families, which map elements into bins. Similar elements are more likely to be mapped to
same bucket. Locality-sensitive hash families and, hence local sensitive hashing, are de�ned only
for speci�c similarity and distance measures such as cosine or Jaccard similarity and Hamming or
Euclidean distance. Local sensitive hashing is the building block for grouping similar malicious
sample and it has been applied in some works [10, 73, 75].

5.3.2 Clustering with Distance and Similarity Metrics. As already discussed, clustering can be
performed by taking into account either distance or similarity among di�erent samples. Several
metrics have been used in malware analysis: Euclidean [54, 61] and Hamming distances [54],
cosine [54] and Jaccard similarities [54, 59]. Distances can be also computed on signatures extracted
by samples using tools such as ssdeep16 and sdhash17. Both are fuzzy hashing algorithms based
on blocks: anytime a su�cient amount of input is processed, a small block is generated. Each
of the generated blocks is a portion of the �nal signature. Samples can be grouped together, in
conjunction with other features, on the basis of their signatures obtained with block-based fuzzy
hashing, as in [33] and [75].

Time complexity of algorithms based on distances and similarity metrics depends both on the
used measures and their implementations. For commonly applied metrics, such as cosine similarity,
Euclidean and Hamming distances, the required time to compute them between two d-dimensional
points is O (d). �us, given a dataset ofm samples, the time complexity to cluster them on these
metrics is O

(
d ·m2) .

5.3.3 k-Means Clustering. k-means is one of the simplest and most used clustering algorithm [62].
It is a variant of the Expectation Maximization algorithm, belongs to the class of partition algorithms
and separates data into k clusters. �e number of clusters k is chosen a priori and initial cluster
centers, called centroids, are picked randomly. Iteratively, each instance of the dataset is assigned
to its nearest centroid to minimize the least within-cluster sum of squares, that is the squared
Euclidean distance. k-means can halt in two cases: the sum of squared error is under a threshold τ
or no change occurs for the k clusters. �is guarantees to reach a local optimum and convergence in
a �nite number of iterations. Even if theoretically has been proven that in the worst case k-means
has an exponential running time, a relatively recent smoothed analysis has shown that the number
of iterations are bounded by a polynomial in the number n of data points [5]. However, in practice,
k-means running time is o�en linear in n. Both Huang et al. and Pai et al. use k-means clustering
for performing family selection as objective of their analyses [35, 56].

5.3.4 Density-based Spatial Clustering of Applications with Noise. DBSCAN is a widely known
density-based clustering algorithm, initially proposed by Ester et al. for grouping objects in large
databases [26]. It is able to e�ciently compute clusters of arbitrary shape through a two step
process. �e �rst step involves the selection of an entry having in its neighbourhood at least a
certain number of other entries (i.e., the core point). Its neighbours can be obtained by transforming
the database into a collection of points and by then measuring the distance among them. If the
distance is lower than a chosen threshold, then the two points are considered neighbours. In the
second step, the cluster is built by grouping all the points that are density-reachable from the core
point. �e notion of density-reachability has been de�ned in [26], and regards the constraints
that allow a point to be directly reachable from another. �e conditions impose that the former
is a core point and the la�er is in its neighbourhood. Rather than referring to two single points,
16ssdeep: h�p://ssdeep.sourceforge.net
17sdhash: h�p://roussev.net/sdhash/sdhash.html

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

http://ssdeep.sourceforge.net
http://roussev.net/sdhash/sdhash.html

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:19

density-reachability applies to a path in which points are directly reachable from each other. �e
algorithm runs on a database storing n entries that can be transformed in n points, and mainly
serves neighbourhood queries. �ese queries can be answered e�ciently in O(logn) (e.g. by using
R∗-trees), thus the expected running time of DBSCAN is O(n logn). Vadrevu et al. use DBSCAN to
detect variants of malware [77].

5.3.5 Hierarchical Clustering. A hierarchical clustering schema recursively partitions instances
and constructs a tree of clusters called dendrogram. �e tree structure allows the cluster exploration
at di�erent levels of granularity. Hierarchical clustering can be performed in two ways: agglomera-
tive and divisive. Agglomerative approaches are bo�om-up: they start with clusters each having
a single element, then closer cluster pairs are iteratively merged until a unique cluster contains
all the elements. Divisive approaches are top-down: all the elements are initially included in a
unique cluster, then they are divided in smaller sub-clusters until clusters with only one element
are obtained.

Closeness can be modelled using di�erent criteria: complete-link, single-link, average-link,
centroid-link, and Ward’s-link [38, 54]. Agglomerative clustering is more used than divisive, mainly
because in the worst case it has a running time O(n2 logn), while divisive approach is exponential.
In malware analysis, hierarchical clustering has been applied in [37, 54].

5.3.6 Prototype-based Clustering. Analogously to what described in Section 5.2.5, prototypes
can be also used to cluster malware that are similar among each other [61]. In [61], Rieck et al.
leverage hierarchical complete linkage clustering technique to group reports (see Section 5.2.5 for
prototype/report mapping). �e algorithm running time is O(k2 logk + n), where k and n are the
number of prototypes and reports, respectively. �us, prototype-based clustering provides a (n/k) 1

2

time complexity with respect to exact hierarchical clustering running time.

5.3.7 Self-Organizing Maps. Self-organizing maps are useful data explorations tools that can
be also used to cluster data. �ey are applied to a vast range of application �elds going from
industry, �nance, natural sciences, to linguistics [41]. Self-organizing maps can be represented
as an ordered regular grid in which more similar models are automatically arranged together in
adjacent positions on the grid, far away from less similar models. Model disposition allows to get
additional information from the data topographic relationships. �is capability is fundamental
when dealing with high-dimensional data. In a �rst phase, self-organizing maps are calibrated
using an input dataset. �en, each time a new input instance feeds the map, it is elaborated by
the best-matching model. Analogously to what described in Section 5.3.2, a model best-matches an
instance on the basis of a speci�c similarity or distance measure. Many proposed self-organizing
maps rely on di�erent similarity or distance measures (e.g., dot product, Euclidean and Minkowski
distances). Self-organizing maps have been used in [16] for analysing malware.

5.4 Others
�is subsection presents Machine Learning algorithms that are neither signature-based, nor classi-
�cation, nor clustering.

5.4.1 Expectation Maximization. Expectation-maximization is a general-purpose statistical iter-
ative method of maximum likelihood estimation used in cases where observations are incomplete.
It is o�en applied also for clustering. Given a set of observations characterizing each element of the
dataset, an expectation step assigns the element to the most likely cluster, whereas a maximization
step recomputes centroids. �e main strengths of expectation-maximization are stability, robustness
to noise, and ability to deal with missing data. Finally, the algorithm has been proven to converge to

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:20 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

a local maximum. Expectation maximization has been employed by Pai et al. for detecting malware
variants belonging to the same families [56].

5.4.2 Learning with Local and Global Consistency. Learning with local and global consistency is
a semi-supervised approach. Information on known labels are spread to neighbours until a global
stable state is reached [82]. Learning with local and global consistency has been proved e�ective on
synthetic data, in digit recognition and text categorization [82]. In malware analysis, this learning
approach has been applied with good, but not excellent, results in [67].

5.4.3 Belief Propagation. Belief propagation is an approach for performing inference over
graphical models (e.g. Bayesian networks) and, in general, graphs. It works iteratively. At each
iteration, each pair of inter-connected nodes exchanges messages reporting nodes opinions about
their probabilities of being in a certain state. Belief propagation converges when probabilities do
not keep changing signi�cantly or a�er a �xed number of iterations. Both [73] and [15] adapt
belief propagation to malware analysis by proposing new mathematical representations. In [15],
Chen et al. properly tune belief propagation algorithm and improve it with respect to the approach
used in [73] and other classi�cation algorithms (e.g., support vector machines and decision trees).

6 CHARACTERIZATION OF SURVEYED PAPERS
In this section we leverage on the discussed objectives (Section 3), feature classes (Section 4) and
algorithm types (Section 5) to precisely characterize each reviewed paper. Such characterization is
organized by objective: for each objective, we provide an overall view about which works aims at
that objective, what machine learning algorithm they use and what feature classes they rely on.

6.1 Malware detection
Table 14 lists all the reviewed works having malware detection as objective. It can be noted that
the most used inputs regard

• byte sequences, extracted from either the PE or its disassembled code, and organized in
n-grams
• API/system call invocations, derived by executing the samples

Most of the works use more algorithms to �nd out the one guaranteeing more accurate results.

6.2 Malware variants detection
As explained in Section 3.2, variants detection includes two slightly diverse objectives: given a
malware, identifying either its variants or its families. Tables 15 and Table 16 detail surveyed works
aiming to identify variants and families, respectively. In both characterizations, APIs and system
calls are largely employed as well as their interactions with the environment, modeled by memory,
�le system, Windows registries, and CPU registers. Some of the surveyed papers, instead, use byte
sequences and opcodes, while others add to the analysis features related to sample network activity.

6.3 Malware category detection
�ese articles focus on the identi�cation of speci�c threats and, thus, on particular inputs such
as byte sequences, opcodes, executable binaries’ function lengths, and network activity regarding
samples. Table 17 reports the works whose objectives deal with the detection of the speci�c category
of a malware sample.

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:21
Pa

pe
r

A
lg

or
ith

m
s

St
rin

gs
By

te
se

q.
O

ps
A

PI
s

Sy
s.

ca
lls

Fi
le

sy
st

em
W

in
.

Re
g.

CP
U

re
g.

PE
�l

e
ch

ar
.

Ra
ise

d
ex

ce
p.

N
et

w
or

k

Sc
hu

ltz
et

al
[6

8]
Ru

le
-b

as
ed

cl
as

si�
er

,N
aı̈

ve
Ba

ye
s

X
X

Ko
lte

ra
nd

M
al

oo
f[

42
]

D
ec

isi
on

Tr
ee

,N
aı̈

ve
Ba

ye
s,

SV
M

X

Fi
rd

au
si

et
al

.[
28

]
D

ec
isi

on
Tr

ee
,N

aı̈
ve

Ba
ye

s,
SV

M
,k

-N
N

,M
ul

til
ay

er
Pe

rc
ep

tro
n

N
eu

ra
lN

et
w

or
k

X
X

X

A
nd

er
so

n
et

al
.[

3]
SV

M
X

X

Sa
nt

os
et

al
.[

67
]

Le
ar

ni
ng

w
ith

Lo
ca

la
nd

Gl
ob

al
Co

ns
ist

en
cy

X

A
nd

er
so

n
et

al
.[

4]
M

ul
tip

le
Ke

rn
el

Le
ar

ni
ng

X
X

X
X

Yo
nt

s[
81

]
Ru

le
-b

as
ed

cl
as

si�
er

X
Es

ka
nd

ar
ie

ta
l.

[2
5]

Ba
ye

sia
n

N
et

w
or

k
X

Sa
nt

os
et

al
.[

66
]

Ba
ye

sia
n

N
et

w
or

k,
D

ec
isi

on
Tr

ee
,k

-N
N

,S
VM

X
X

X

Va
dr

ev
u

et
al

.[
78

]
Ra

nd
om

Fo
re

st
X

X
Ba

ie
ta

l.
[7

]
D

ec
isi

on
Tr

ee
,R

an
do

m
Fo

re
st

X
Kr

uc
zk

ow
sk

ia
nd

Sz
yn

ki
ew

ic
z[

44
]

SV
M

X

Ta
m

er
so

y
et

al
.[

73
]

Cl
us

te
rin

g
w

ith
lo

ca
lit

y
se

ns
iti

ve
ha

sh
in

g
X

Up
pa

le
ta

l.
[7

6]
De

cis
io

n
Tr

ee
,R

an
do

m
Fo

re
st

,
N

aı̈
ve

Ba
ye

s,
SV

M
X

X

Ch
en

et
al

.[
15

]
Be

lie
fp

ro
pa

ga
tio

n
X

El
ha

di
et

al
.[

24
]

M
al

ic
io

us
gr

ap
h

m
at

ch
in

g
X

Fe
ng

et
al

.[
27

]
Ru

le
-b

as
ed

cl
as

si�
er

,
M

al
ic

io
us

sig
na

tu
re

m
at

ch
in

g,
SV

M
X

Gh
ia

si
et

al
.[

32
]

Ru
le

-b
as

ed
cl

as
si�

er
X

X
Sr

ak
ae

w
et

al
.[

72
]

D
ec

isi
on

Tr
ee

X
X

W
üc

hn
er

et
al

.[
80

]
N

aı̈
ve

Ba
ye

s,
Ra

nd
om

Fo
re

st
,

SV
M

X
X

X
X

Ta
bl
e
14
.
C
ha

ra
ct
er
iz
at
io
n
of

su
rv
ey
ed

pa
pe
rs

ha
vi
ng

m
al
w
ar
e
de
te
ct
io
n
as

ob
je
ct
iv
e.

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:22 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

Pa
pe

r
A

lg
or

ith
m

s
By

te
se

q.
O

ps
A

PI
s

Sy
s.

ca
lls

M
em

or
y

Fi
le

sy
st

em
W

in
.

Re
g.

CP
U

re
g.

PE �l
e

ch
ar

.
N

et
w

or
k

Kw
on

an
d

Le
e

[4
5]

M
al

ic
io

us
sig

na
tu

re
m

at
ch

in
g

X

Sh
os

ha
et

al
.[

70
]

M
al

ic
io

us
sig

na
tu

re
m

at
ch

in
g

X
X

X
X

Ch
io

ni
se

ta
l.

[1
7]

M
al

ic
io

us
sig

na
tu

re
m

at
ch

in
g

X
X

X
X

Gh
ar

ac
he

h
et

al
.[

31
]

-18
X

Gh
ia

si
et

al
.[

32
]

Ru
le

-b
as

ed
cl

as
si�

er
X

X

Kh
od

am
or

ad
ie

ta
l.

[4
0]

D
ec

isi
on

Tr
ee

,R
an

do
m

Fo
re

st
X

Up
ch

ur
ch

an
d

Zh
ou

[7
5]

Cl
us

te
rin

g
w

ith
lo

ca
lit

y
se

ns
iti

ve
ha

sh
in

g
X

Li
an

g
et

al
.[

49
]

Ru
le

-b
as

ed
cl

as
si�

er
X

X
X

X
Va

dr
ev

u
an

d
Pe

rd
isc

i[
77

]
D

BS
CA

N
cl

us
te

rin
g

X
X

X

Ta
bl
e
15
.
C
ha

ra
ct
er
iz
at
io
n
of

su
rv
ey
ed

pa
pe
rs

ha
vi
ng

m
al
w
ar
e
va
ri
an

ts
se
le
ct
io
n
as

ob
je
ct
iv
e.

18
In
st
ea
d
of

us
in
g
m
ac
hi
ne

le
ar
ni
ng

te
ch
ni
qu

es
,G

ha
ra
ch
eh

et
al
.r
el
y
on

H
id
de
n
M
ar
ko
v
M
od

el
s
to

de
te
ct

va
ri
an

ts
of

th
e
sa
m
e
m
al
ic
io
us

sa
m
pl
e
[3
1]
.

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:23

Pa
pe

r
A

lg
or

ith
m

s
St

r.
By

te
se

q.
O

ps
A

PI
s

Sy
s.

ca
lls

M
em

.
Fi

le sy
s.

W
in

.
Re

g.
CP

U
re

g.
Fu

nc
.

le
ng

th
PE

�l
e

ch
ar

.
Ra

ise
d

ex
ce

p.
N

et
.

H
ua

ng
et

al
.[

35
]

k-
M

ea
ns

-li
ke

al
go

rit
hm

X
Pa

rk
et

al
.[

58
]

M
al

ic
io

us
gr

ap
h

m
at

ch
in

g
X

D
ah

le
ta

l.
[1

9]
Lo

gi
st

ic
Re

gr
es

sio
n,

N
eu

ra
lN

et
w

or
ks

X
X

H
u

et
al

.[
34

]
Pr

ot
ot

yp
e-

ba
se

d
cl

us
te

rin
g

X

Isl
am

et
al

.[
36

]
D

ec
isi

on
Tr

ee
,k

-N
N

,
Ra

nd
om

Fo
re

st
,S

VM
X

X
X

Ko
ng

an
d

Ya
n

[4
3]

SV
M

,k
-N

N
X

X
X

X
N

ar
ia

nd
Gh

or
ba

ni
[5

5]
D

ec
isi

on
Tr

ee
X

A
hm

ad
ie

ta
l.

[1
]

SV
M

,R
an

do
m

Fo
re

st
,

Gr
ad

ie
nt

Bo
os

tin
g

D
ec

isi
on

Tr
ee

X
X

X
X

X
X

As
qu

ith
[6

]
-19

X
X

X
X

X
Li

n
et

al
.[

50
]

SV
M

X
X

X
X

Ka
w

ag
uc

hi
an

d
O

m
ot

e
[3

9]
D

ec
isi

on
Tr

ee
,R

an
do

m
Fo

re
st

,k
-N

N
,N

aı̈
ve

Ba
ye

s
X

M
oh

ai
se

n
et

al
.[

54
]

D
ec

isi
on

Tr
ee

,k
-N

N
,

SV
M

,C
lu

st
er

in
g

w
ith

w
ith

di
�e

re
nt

sim
ila

rit
y

m
ea

su
re

s,
H

ie
ra

rc
hi

ca
l

cl
us

te
rin

g

X
X

X
X

Pa
ie

ta
l.

[5
6]

k-
M

ea
ns

,E
xp

ec
ta

tio
n

M
ax

im
iz

at
io

n
X

Ta
bl
e
16
.
C
ha

ra
ct
er
iz
at
io
n
of

su
rv
ey
ed

pa
pe
rs

ha
vi
ng

m
al
w
ar
e
fa
m
ili
es

se
le
ct
io
n
as

ob
je
ct
iv
e.

19
A
sq
ui
th

de
sc
ri
be
s
ag
gr
eg
at
io
n
ov
er
la
y
gr
ap

hs
fo
r
st
or
in
g
PE

m
et
ad

at
a,
w
it
ho

ut
fu
rt
he

r
di
sc
us
si
ng

an
y
m
ac
hi
ne

le
ar
ni
ng

te
ch
ni
qu

e
th
at

co
ul
d
be

ap
pl
ie
d
on

to
p
of

th
es
e
ne
w
da

ta
st
ru
ct
ur
es
.

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:24 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

Paper Algorithms Byte
seq. Ops Func.

length Network

Tian et al. [74] Rule-based classi�er X
Siddiqui et al. [71] Decision Tree, Random Forest X

Chen et al. [16] Random Forest, SVM X
Comar et al. [18] Random Forest, SVM X

Sexton et al. [69]
Rule-based classi�er, Logistic

Regression,
Naı̈ve Bayes, SVM

X X

Table 17. Characterization of surveyed papers having malware category detection as objective.

Paper Algorithms Byte
seq.

APIs
Sys.
calls

Mem. File
sys.

Win.
Reg.

CPU
reg. Net.

Bailey et al. [8]
Hierarchical clustering

with normalized
compression distance

X X X X

Bayer et al. [10] Clustering with locality
sensitive hashing X

Rieck et al. [61]

Prototype-based
classi�cation and

clustering with Euclidean
distance

X X

Palahan et al. [57] Logistic Regression X
Egele et al. [23] SVM20 X X X

Table 18. Characterization of surveyed papers having malware similarities detection as objective. 20SVM is
used only for computing the optimal values of weight factors associated to each feature chosen to detect
similarities among malicious samples.

Paper Algorithms Byte
seq. Ops

APIs
Sys.
calls

Network

Bayer et al. [10] Clustering with locality
sensitive hashing X

Lindorfer et al. [51] Rule-based classi�er X X

Rieck et al. [61]
Prototype-based classi�cation
and clustering, clustering with

Euclidean distance
X X

Palahan et al. [57] Logistic Regression X

Santos et al. [65] Decision Tree, k-NN, Bayesian
Network, Random Forest X

Polino et al. [59] Clustering with Jaccard
similarity X

Table 19. Characterization of surveyed papers having malware di�erences detection as objective.

6.4 Malware novelty and similarity detection
Similarly to Section 6.2, this characterization groups works whose objective is to spot (dis)similarities
among samples. According to the �nal objective of the analysis, one can be more interested in

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:25

�nding out either similarities or di�erences characterizing a group of samples. All the analysed
papers but [65] rely on APIs and system call collection (see Table 18 and Table 19).
While works aiming to spo�ing di�erences among PEs, in general, do not take into account
interactions with the system in which they are executed, the ones that identify similarities leverage
such information.

6.5 Malware development detection
Table 20 outlines the very few works that propose approaches to deal with malware development
cases. While Chen et al. use just byte sequences for their analysis [16], in [33], both information
related to malicious sample execution into a sandbox and their submission-related metadata are
used.

Paper Algorithms Byte
seq.

APIs
Sys.
calls

File
sys.

Win.
Reg. Net. Submissions

Chen et al. [16]

Gradient Boosting
Decision Tree,

Self-Organizing Maps,
SVM

X

Graziano et al. [33]
Logistic Model Tree,

Clustering using ssdeep
tool

X X X X X

Table 20. Characterization of surveyed papers having malware development detection as objective.

6.6 Malware a�ribution
Malware a�ribution is one of the most important tasks at the strategic level (see Section 3.6). �e
U.S. government has allocated research funds for the next decade to be able to a�ribute cyber
threats to speci�c actors or groups, active in the cyberwarfare. In addition to the typical inputs
used in malware analysis, Caliskan-Islam et al. rely on code stylometry [14] (refer to Table 21).

Paper Algorithms Code stylometry
Caliskan-Islam et al. [14] Random Forest X

Table 21. Characterization of surveyed papers having malware a�ribution as objective.

6.7 Malware triage
Even if serious a�ention has been paid on malware detection in general, much less consideration is
given to malware triage, as shown in Table 22. Jang et al. are the only ones, among the surveyed

Paper Algorithms Byte
seq.

APIs
Sys.
calls

Jang et al. [37] Clustering with locality sensitive hashing,
full hierarchical clustering X X

Table 22. Characterization of surveyed papers having malware triage as objective.

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:26 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

0

5

10

15

20

25

Malicious Benign

Fig. 1. Dataset sources for malicious and benign sam-
ples

0

5

10

15

20

25

30

35

Manual Automated Both	manual	and	
automated

No	labeling

Pa
pe
rs

Labeling	 method

Fig. 2. Dataset labeling methods

works, that perform triage by using PE’s byte sequences and API/system call invocations [37].

7 DATASETS
In the vast majority of surveyed works, datasets contain both malicious and benign samples.
Nevertheless, several papers perform their experimental evaluations using datasets having solely
malicious executables. �e objectives of these works are variants and families selection [1, 34, 35,
43, 48, 49, 54, 55, 70, 75, 77], category detection [74], malware novelty and similarity detection [8, 10,
51, 61]. Just two works rely on benign datasets only [14, 23]. Since their objectives are identifying
sample similarities and a�ributing the ownership of some source codes under analysis, respectively,
then they do not necessarily need malware.

Figure 1 reports a summary of the employed sources for malicious and benign samples, re-
spectively. Used datasets come from legitimate applications, public repositories, security vendors,
sandboxes, AV companies and research centers, Internet Service Providers, honeypots, CERT and,
in some cases, datasets are built by the researchers themselves.

It is worth noting that most of the benign datasets consist of legitimate applications, while most
of malware have been obtained from public repositories, security vendors and popular sandboxed
analysis services. Legitimate applications include PEs contained in the “Program Files” or “system”
folders, and downloads from “trusted” (i.e. signed) companies. Examples of these benign programs
are Cygwin, Pu�y, the Microso� O�ce Suite, and Adobe Acrobat. �e most popular public
repository in the examined works is VX Heavens21, followed by O�ensive Computing22 and Malicia
Project23. �e �rst two repositories are still actively maintained at the time of writing, while Malicia
Project has been permanently shut down due to dataset aging and lack of maintainers.

Security vendors, popular sandboxed analysis services, and AV companies have access to a huge
number of samples. Surveyed works rely on CWSandbox and Anubis sandboxed analysis services.
CWSandbox is a commercial sandbox, now named �reat Analyzer. It is actively developed by
�reatTrack Security24. Anubis is no more maintained25 by their creators and by iSecLab26, which
was the international laboratory hosting the sandbox. As can be observed from Figure 1, these
21VX Heavens: h�p://vxheaven.org
22O�ensive Computing: h�p://www.o�ensivecomputing.net
23Malicia Project: h�p://malicia-project.com
24�reatTrack: h�ps://www.threa�rack.com/malware-analysis.aspx
25Anubis: h�ps://anubis.iseclab.org
26iSecLab: h�ps://iseclab.org

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

http://vxheaven.org
http://www.offensivecomputing.net
http://malicia-project.com
https://www.threattrack.com/malware-analysis.aspx
https://anubis.iseclab.org
https://iseclab.org

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:27

sandboxes are mainly used for obtaining malicious samples. �e same trend holds for security
vendors, AV companies and research centers. Internet Service Providers (ISPs), honeypots, and
Computer Emergency Response Teams (CERTs) share with researchers both benign and malicious
datasets.

An interesting case is represented by samples developed by the researchers themselves. A few
works use in their evaluations malicious samples developed by the authors [31, 40, 70]. �ese
samples are created by also using malware toolkits such as Next Generation Virus Constrution
Kit27, Virus Creation Lab28, Mass Code Generator29, and Second Generation Virus Generator30.
Finally, a minority of analysed papers do not mention the source of their datasets.

One of the most common problems of these datasets is that, very o�en, they are not balanced.
A proper training of machine learning models require that each class contains an almost equal
amount of samples, otherwise inaccurate models could be obtained. �e same problem holds
when also benign datasets are used, indeed malicious samples should be roughly as many as
benign samples. In [81], Yonts supports his choice of using a smaller benign dataset by pointing
out that changes in standard system �les and legitimate applications are li�le. However, there
are surveyed works that rely on benign datasets whose size is bigger than the size of malicious
ones [12, 15, 40, 42, 69, 71, 73, 76].

Samples contained in the datasets used in considered papers are already labeled in general.
Figure 2 reports statistics on whether considered works perform further labeling on these sam-
ples. �e majority of reviewed papers does not perform any additional labeling operation to their
already-labeled datasets. However, some works analyse samples again and recompute labels to
check if they match with the ones provided together with the datasets. Label computation can
be manual, automated, or both. Manual labeling is a highly time-consuming task, but provides
more accurate results since this activity is usually performed by security experts. Consequently,
the number of samples that can be labeled using this method is quite small compared to automated
labeling techniques. Few works use manual labeling [19, 33, 59, 75], while others combine manual
and automated methods [10, 34, 51, 54].

Di�erently from other research �elds, in malware analysis there are no available reference
benchmarks to compare accuracy and performance with respect to previous works. In addition,
since the datasets used for experimental evaluations are rarely shared, it is di�cult, if not impossible,
to compare works. In the papers we have surveyed, only two works have shared the dataset used
in their evaluations [68, 75], while a third one plans to provide a reference to the analysed malware
samples in the future [54]. To this end, Upchurch et al. [75] share a golden standard test dataset for
future works that aim to perform malware variants selection analyses. �e dataset is imbalanced
and only includes 85 samples, organized in 8 families containing trojans, information stealers,
bots, keyloggers, backdoors, and potentially unwanted programs. All the above samples have been
analysed by professional malware analysts and tested against 5 di�erent malware variant detection
approaches. Experimental evaluations report performance and accuracy of tested methodologies
and compare obtained results with the ones published in the original papers. Sample metadata
include MD5 hashes, but no temporal information, i.e., when a sample appeared �rst. Miller et al.
have extensively proved that the lack of this critical information considerably a�ects the accuracy
of experimental results [53].

27Next Generation Virus Construktion Kit: h�p://vxheaven.org/vx.php?id=tn02
28Virus Creation Lab: h�p://vxheaven.org/vx.php?id=tv03
29Mass Code Generator: h�p://vxheaven.org/vx.php?id=tm02
30Second Generation Virus Generator: h�p://vxheaven.org/vx.php?id=tg00

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:28 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

Given such lack of reference datasets, we propose three desiderata for malware analysis bench-
marks.

(1) Benchmarks should be labeled accordingly to the speci�c objectives to achieve. As an
example, benchmarks for families selection should be labeled with samples’ families, while
benchmarks for category detection should label malware with their categories.

(2) Benchmarks should be balanced: samples of di�erent classes should be in equal proportion
to avoid issues on classi�cation accuracy.

(3) Benchmarks should be actively maintained and updated over time with new samples, trying
to keep pace with the malware industry. Samples should also be provided with temporal
information, e.g., when they have been spo�ed �rst. In this way analysts would have
at disposal a sort of timeline of malware evolution and they could also discard obsolete
samples.

8 MALWARE ANALYSIS ECONOMICS
Analysing samples through machine learning techniques requires complex computations, both
for extracting desired features and for running chosen algorithms. �e time complexity of these
computations has to be carefully taken into account because of the need to complete them fast
enough to keep pace with the speed new malware are developed. Space complexity has to be
considered as well, indeed feature space can easily become excessively large (e.g., using n-grams),
and also the memory required by machine learning algorithms can grow to the point of saturating
available resources.

Time and space complexities can be either reduced to adapt to processing and storage capacity
at disposal, or they can be accommodated by supplying more resources. In the former case, the
accuracy of the analysis is likely to worsen, while in the la�er accuracy levels can be kept at the
cost of providing additional means, e.g., in terms of computing machines, storage, network. �ere
exist tradeo�s between maintaining high accuracy and performance of malware analysis on one
hand, and supplying the required equipment on the other.

We refer to the study of these tradeo�s as malware analysis economics, and in this section we
provide some initial qualitative discussions on this novel topic.

�e time needed to analyse a sample through machine learning is mainly spent in feature
extraction and algorithm execution. �ere exist in literature plenty of works discussing time
complexity of machine learning algorithms. �e same does not apply for the study of the execution
time of the feature extraction process. �e main aspect to take into account in such study is whether
desired features come from static or dynamic analysis, which considerably a�ects execution time
because the former does not require to run the samples, while the la�er does. Table 23 categorizes
surveyed works on the basis of the type of analysis they carry out, i.e., static, dynamic or hybrid.
�e majority of works relies on dynamic analyses, while the others use, in equal proportions, either
static analyses alone or a combination of static and dynamic techniques.

Table 23. Surveyed papers arranged according the type of analysis performed on input samples.

Malware analysis Papers
Static [1, 7, 14–16, 27, 31, 34, 35, 40, 42, 43, 45, 56, 65, 67–69, 71–75, 78, 81]

Dynamic [3, 8, 10, 18, 19, 24, 28, 32, 39, 44, 48–51, 54, 55, 57, 58, 61, 70, 76, 80]
Hybrid [4, 17, 23, 25, 33, 36, 37, 59, 66, 77]

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:29

Table 24. Type of analysis required for extracting the inputs presented in Section 4.

Required
analysis Str. Byte

seq. Ops
APIs
Sys.
calls

Mem. File
sys.

Win.
Reg.

CPU
reg.

Func.
len.

PE
�le
char.

Raised
excep. Net.

AV/Sand.
submis-
sions

Static X X X X X X X X
Dynamic X X X X X X X X

To deepen even further this point, Table 24 reports for each feature type whether it can be
extracted through static or dynamic analysis. It is interesting to note that certain types of features
can be extracted both statically and dynamically, with signi�cant di�erences on execution time
as well as on malware analysis accuracy. Indeed, while certainly more time-consuming, dynamic
analysis enables to gather features that make the overall analysis improve its e�ectiveness [20].
As an example, we can consider the features derived from API calls (see Table 24), which can be
obtained both statically and dynamically. Tools like IDA provide the list of imports used by a
sample and can statically trace what API calls are present in the sample code. Malware authors
usually hide their suspicious API calls by inserting in the source code a huge number of legitimate
APIs. By means of dynamic analysis, it is possible to obtain the list of the APIs that the sample has
actually invoked, thus simplifying the identi�cation of those suspicious APIs. By consequences, in
this case dynamic analysis is likely to generate more valuable features compared to static analysis.

Although choosing dynamic analysis over, or in addition to, static seems obvious, its inherently
higher time complexity constitutes a potential performance bo�leneck for the whole malware
analysis process, which can undermine the possibility to keep pace with malware evolution speed.
�e natural solution is to provision more computational resources to parallelise analysis tasks and
thus remove bo�lenecks. In turn, such solution has a cost to be taken into account when designing
a malware analysis environment, such as the one presented by Laurenza et al. [46].

�e qualitative tradeo�s we have identi�ed are between accuracy and time complexity (i.e., higher
accuracy requires larger times), between time complexity and analysis pace (i.e., larger times implies
slower pace), between analysis pace and computational resources (faster analysis demands using
more resources), and between computational resources and economic cost (obviously, additional
equipment has a cost). Similar tradeo�s also hold for space complexity. As an example, when using
n-grams as features, it has been shown that larger values of n lead to more accurate analysis, at cost
of having the feature space grow exponentially with n. As another example, using larger datasets
in general enables more accurate machine learning models and thus be�er accuracy, provided
the availability of enough space to store all the samples of the dataset and the related analysis
reports. We claim the signi�cance of investigating these tradeo�s more in details, with the aim of
outlining proper guidelines and strategies to design a malware analysis environment in compliance
with requirements on analysis accuracy and pace, and also by respecting budget constraints.

9 CONCLUSION
We presented a survey on existing literature on malware analysis through machine learning tech-
niques. �ere are three main contributions of our work. First, we proposed an organization of
reviewed works according to three orthogonal dimensions: the objective of the analysis, the type
of features extracted from samples, the machine learning algorithms used to process these features.
We identi�ed 7 di�erent malware analysis objectives (ranging from malware detection to malware
triage), grouped features according to their speci�c type (e.g., strings and byte sequences), and
organized machine learning algorithms for malware analysis in 4 distinct classes. Such characteri-
zation provides an overview on how machine learning algorithms can be employed in malware

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

1:30 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

analysis, emphasising which speci�c feature classes allow to achieve the objective(s) of interest.
In this �rst contribution, we discussed the general lack of justi�cations for using a speci�c set of
features to properly describe the malicious traits of samples: the majority of reviewed papers did
not explain the correlation between considered features and obtained results.

Second, we highlighted some issues regarding the datasets used in literature and outlined three
desiderata for building enhanced datasets. Currently, there is a shortage of publicly available datasets
suitable for speci�c objectives. For example, datasets where samples are properly labelled by family
are a rarity. Furthermore, usually, datasets employed in reviewed experimental evaluations are
rarely shared. In the majority of examined papers, used datasets are not balanced, hence preventing
the construction of really accurate models. When malware samples are to be used for evaluating
novel analysis techniques, their fast obsolescence becomes an additional and relevant issue. Indeed,
the e�ectiveness of new approaches should be tested on samples as much recent as possible,
otherwise there would be the risk that such approaches turn out to be poorly accurate when applied
in the real world. At today’s malware evolution pace, samples are likely to become outdated in
a few months, but reference datasets commonly include malware of a few years ago. �us, we
proposed three desired characteristics for malware analysis benchmarks: they should be (i) labeled
accordingly to the speci�c objectives to achieve, (ii) balanced, (iii) actively maintained and updated
over time.

�ird, we introduced the novel concept of malware analysis economics, concerning the investi-
gation and exploitation of existing tradeo�s between performance metrics of malware analysis
(e.g., analysis accuracy and execution time) and economical costs. We have identi�ed tradeo�s
between accuracy, time complexity, analysis pace with respect to malware evolution, required
computational resources, and economic cost. Similar tradeo�s also hold for space complexity.

Noteworthy research directions to investigate can be linked to each of the three contributions.
�e organization of malware analysis works along three dimensions can be further re�ned by
be�er identifying and characterizing analysis objectives, extracted features, and used machine
learning algorithms. Novel combinations of objectives, features and algorithms can be investigated
to achieve be�er performance compared to the state of the art. Moreover, observing that some
classes of algorithms have never been used for a certain objective may suggest novel directions to
examine further. �e discussion on malware analysis datasets can drive academic works aimed at
building new datasets in accordance with the three identi�ed desiderata. Providing be�er datasets
would enable be�er and fairer comparisons among results claimed by diverse works, hence would
ease e�ective progresses in the malware analysis �eld. Finally, the initial set of general tradeo�s
described in the context of malware analysis economics can be deepened to derive quantitative
relationships among the key metrics of interest, which would allow de�ning e�ective approaches
to design and setup analysis environments.

REFERENCES
[1] Mansour Ahmadi, Giorgio Giacinto, Dmitry Ulyanov, Stanislav Semenov, and Mikhail Tro�mov. 2015. Novel feature

extraction, selection and fusion for e�ective malware family classi�cation. CoRR abs/1511.04317 (2015). h�p:
//arxiv.org/abs/1511.04317

[2] Frances E. Allen. 1970. Control Flow Analysis. In Proceedings of a Symposium on Compiler Optimization. ACM, New
York, NY, USA, 1–19. h�ps://doi.org/10.1145/800028.808479

[3] Blake Anderson, Daniel �ist, Joshua Neil, Curtis Storlie, and Terran Lane. 2011. Graph-based malware detection
using dynamic analysis. Journal in Computer Virology 7, 4 (2011), 247–258.

[4] Blake Anderson, Curtis Storlie, and Terran Lane. 2012. Improving malware classi�cation: bridging the static/dynamic
gap. In Proceedings of the 5th ACM workshop on Security and arti�cial intelligence. ACM, 3–14.

[5] D. Arthur, B. Manthey, and H. Röglin. 2009. k-Means Has Polynomial Smoothed Complexity. In FOCS ’09. 405–414.
h�ps://doi.org/10.1109/FOCS.2009.14

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

http://arxiv.org/abs/1511.04317
http://arxiv.org/abs/1511.04317
https://doi.org/10.1145/800028.808479
https://doi.org/10.1109/FOCS.2009.14

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:31

[6] Ma�hew Asquith. 2015. Extremely scalable storage and clustering of malware metadata. Journal of Computer Virology
and Hacking Techniques (2015), 1–10.

[7] Jinrong Bai, Junfeng Wang, and Guozhong Zou. 2014. A malware detection scheme based on mining format information.
�e Scienti�c World Journal 2014 (2014).

[8] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jahanian, and Jose Nazario. 2007. Automated
classi�cation and analysis of internet malware. In Recent advances in intrusion detection. Springer, 178–197.

[9] Ishita Basu. 2016. Malware Detection Based on Source Data using Data Mining: A Survey. American Journal Of
Advanced Computing 3, 1 (2016).

[10] Ulrich Bayer, Paolo Milani Compare�i, Clemens Hlauschek, Christopher Kruegel, and Engin Kirda. 2009. Scalable,
Behavior-Based Malware Clustering. In NDSS, Vol. 9. Citeseer, 8–11.

[11] Zahra Bazrafshan, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh. 2013. A survey on heuristic malware
detection techniques. In Information and Knowledge Technology (IKT), 2013 5th Conference on. IEEE, 113–120.

[12] Leyla Bilge, Davide Balzaro�i, William Robertson, Engin Kirda, and Christopher Kruegel. 2012. Disclosure: detecting
botnet command and control servers through large-scale net�ow analysis. In ACSAC ’12. ACM, 129–138.

[13] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct. 2001), 5–32. h�ps://doi.org/10.1023/A:1010933404324
[14] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare Voss, Fabian Yamaguchi, and Rachel

Greenstadt. 2015. De-anonymizing Programmers via Code Stylometry. In USENIX Security ’15. USENIX Association,
Washington, D.C., 255–270. h�ps://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/
caliskan-islam

[15] L. Chen, T. Li, M. Abdulhayoglu, and Y. Ye. 2015. Intelligent malware detection based on �le relation graphs. In
Semantic Computing (ICSC), 2015 IEEE International Conference on. 85–92. h�ps://doi.org/10.1109/ICOSC.2015.7050784

[16] Zhongqiang Chen, Mema Roussopoulos, Zhanyan Liang, Yuan Zhang, Zhongrong Chen, and Alex Delis. 2012. Malware
characteristics and threats on the internet ecosystem. Journal of Systems and So�ware 85, 7 (2012), 1650–1672.

[17] Ioannis Chionis, Stavros Nikolopoulos, and Iosif Polenakis. 2013. A Survey on Algorithmic Techniques for Malware
Detection. (2013).

[18] P. M. Comar, L. Liu, S. Saha, P. N. Tan, and A. Nucci. 2013. Combining supervised and unsupervised learning for zero-day
malware detection. In INFOCOM, 2013 Proceedings IEEE. 2022–2030. h�ps://doi.org/10.1109/INFCOM.2013.6567003

[19] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. 2013. Large-scale malware classi�cation using random
projections and neural networks. In Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3422–3426.

[20] Anusha Damodaran, Fabio Di Troia, Corrado Aaron Visaggio, �omas H Austin, and Mark Stamp. 2015. A comparison
of static, dynamic, and hybrid analysis for malware detection. Journal of Computer Virology and Hacking Techniques
(2015), 1–12.

[21] Manuel Egele, �eodoor Scholte, Engin Kirda, and Christopher Kruegel. 2008. A Survey on Automated Dynamic
Malware-analysis Techniques and Tools. ACM Comput. Surv. 44, 2, Article 6 (March 2008), 42 pages. h�ps://doi.org/10.
1145/2089125.2089126

[22] Manuel Egele, �eodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012. A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys (CSUR) 44, 2 (2012), 6.

[23] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket Execution: Dynamic Similarity
Testing for Program Binaries and Components. In USENIX Security ’14. USENIX Association, San Diego, CA, 303–317.
h�ps://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/egele

[24] Erbiai Elhadi, Mohd Aizaini Maarof, and Bazara Barry. 2015. Improving the detection of malware behaviour using
simpli�ed data dependent api call graph. Journal of Security and Its Applications (2015).

[25] Mojtaba Eskandari, Zeinab Khorshidpour, and Sa�ar Hashemi. 2013. Hdm-analyser: a hybrid analysis approach based
on data mining techniques for malware detection. Journal of Computer Virology and Hacking Techniques 9, 2 (2013),
77–93.

[26] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering
clusters in large spatial databases with noise. AAAI Press, 226–231.

[27] Zhentan Feng, Shuguang Xiong, Deqiang Cao, Xiaolu Deng, Xin Wang, Yang Yang, Xiaobo Zhou, Yan Huang, and
Guangzhu Wu. 2015. HRS: A Hybrid Framework for Malware Detection. In Proceedings of the 2015 ACM International
Workshop on Security and Privacy Analytics. ACM, 19–26.

[28] Ivan Firdausi, Charles Lim, Alva Erwin, and Anto Satriyo Nugroho. 2010. Analysis of machine learning techniques
used in behavior-based malware detection. In ACT ’10. IEEE, 201–203.

[29] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. 2014. Malware analysis and classi�cation: A survey. Journal of
Information Security 2014 (2014).

[30] Mehmet G Üonen and Ethem Alpaydin. 2011. Multiple Kernel Learning Algorithms. J. Mach. Learn. Res. 12 (July 2011),
2211–2268. h�p://dl.acm.org/citation.cfm?id=1953048.2021071

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

https://doi.org/10.1023/A:1010933404324
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam
https://doi.org/10.1109/ICOSC.2015.7050784
https://doi.org/10.1109/INFCOM.2013.6567003
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2089125.2089126
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/egele
http://dl.acm.org/citation.cfm?id=1953048.2021071

1:32 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

[31] M. Gharacheh, V. Derhami, S. Hashemi, and S. M. H. Fard. 2015. Proposing an HMM-based approach to detect
metamorphic malware. In Fuzzy and Intelligent Systems (CFIS). 1–5. h�ps://doi.org/10.1109/CFIS.2015.7391648

[32] Mahboobe Ghiasi, Ashkan Sami, and Zahra Salehi. 2015. Dynamic VSA: a framework for malware detection based
on register contents. Engineering Applications of Arti�cial Intelligence 44 (2015), 111 – 122. h�ps://doi.org/10.1016/j.
engappai.2015.05.008

[33] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi, and Davide Balzaro�i. 2015. Needles in a Haystack:
Mining Information from Public Dynamic Analysis Sandboxes for Malware Intelligence. In USENIX Security ’15.
1057–1072. h�ps://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/graziano

[34] Xin Hu, Kang G Shin, Sandeep Bhatkar, and Kent Gri�n. 2013. MutantX-S: Scalable Malware Clustering Based on
Static Features. In USENIX Annual Technical Conference. 187–198.

[35] Kai Huang, Yanfang Ye, and Qinshan Jiang. 2009. Ismcs: an intelligent instruction sequence based malware categoriza-
tion system. In Anti-counterfeiting, Security, and Identi�cation in Communication, 2009. IEEE, 509–512.

[36] Ra�qul Islam, Ronghua Tian, Lynn M Ba�en, and Steve Versteeg. 2013. Classi�cation of malware based on integrated
static and dynamic features. Journal of Network and Computer Applications 36, 2 (2013), 646–656.

[37] Jiyong Jang, David Brumley, and Shobha Venkataraman. 2011. Bitshred: feature hashing malware for scalable triage
and semantic analysis. In Computer and communications security. ACM, 309–320.

[38] Stephen C. Johnson. 1967. Hierarchical clustering schemes. Psychometrika 32, 3 (1967), 241–254. h�ps://doi.org/10.
1007/BF02289588

[39] Naoto Kawaguchi and Kazumasa Omote. 2015. Malware Function Classi�cation Using APIs in Initial Behavior. In
Information Security (AsiaJCIS), 2015 10th Asia Joint Conference on. IEEE, 138–144.

[40] Peyman Khodamoradi, Mahmood Fazlali, Farhad Mardukhi, and Masoud Nosrati. 2015. Heuristic metamorphic
malware detection based on statistics of assembly instructions using classi�cation algorithms. In Computer Architecture
and Digital Systems (CADS), 2015 18th CSI International Symposium on. IEEE, 1–6.

[41] Teuvo Kohonen. 2013. Essentials of the Self-organizing Map. Neural Netw. 37 (Jan. 2013), 52–65. h�ps://doi.org/10.
1016/j.neunet.2012.09.018

[42] J. Zico Kolter and Marcus A. Maloof. 2006. Learning to Detect and Classify Malicious Executables in the Wild. J. Mach.
Learn. Res. 7 (Dec. 2006), 2721–2744. h�p://dl.acm.org/citation.cfm?id=1248547.1248646

[43] Deguang Kong and Guanhua Yan. 2013. Discriminant Malware Distance Learning on Structural Information for
Automated Malware Classi�cation. In ACM SIGKDD ’13 (KDD ’13). ACM, New York, NY, USA, 1357–1365. h�ps:
//doi.org/10.1145/2487575.2488219

[44] Michal Kruczkowski and Ewa Niewiadomska Szynkiewicz. 2014. Support vector machine for malware analysis and
classi�cation. In Web Intelligence (WI) and Intelligent Agent Technologies (IAT). IEEE Computer Society, 415–420.

[45] Jonghoon Kwon and Heejo Lee. 2012. Bingraph: Discovering mutant malware using hierarchical semantic signatures.
In Malicious and Unwanted So�ware (MALWARE), 2012 7th International Conference on. IEEE, 104–111.

[46] Giuseppe Laurenza, Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. 2016. An Architecture for Semi-Automatic
Collaborative Malware Analysis for CIs. In Dependable Systems and Networks Workshop, 2016 46th Annual IEEE/IFIP
International Conference on. IEEE, 137–142.

[47] Charles LeDoux and Arun Lakhotia. 2015. Malware and machine learning. In Intelligent Methods for Cyber Warfare.
Springer, 1–42.

[48] Tony Lee and Jigar J Mody. 2006. Behavioral classi�cation. In EICAR Conference. 1–17.
[49] Guanghui Liang, Jianmin Pang, and Chao Dai. 2016. A Behavior-Based Malware Variant Classi�cation Technique.

International Journal of Information and Education Technology 6, 4 (2016), 291.
[50] Chih-Ta Lin, Nai-Jian Wang, Han Xiao, and Claudia Eckert. 2015. Feature Selection and Extraction for Malware

Classi�cation. Journal of Information Science and Engineering 31, 3 (2015), 965–992.
[51] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Compare�i. 2011. Detecting environment-sensitive malware.

In Recent Advances in Intrusion Detection. Springer, 338–357.
[52] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval.

Cambridge University Press, New York, NY, USA.
[53] Brad Miller, Alex Kantchelian, S Afroz, R Bachwani, R Faizullabhoy, L Huang, V Shankar, MC Tschantz, Tony Wu,

George Yiu, et al. 2015. Back to the future: Malware detection with temporally consistent labels. CORR (2015).
[54] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. 2015. Amal: High-�delity, behavior-based automated malware

analysis and classi�cation. Computers & Security (2015).
[55] Saeed Nari and Ali A Ghorbani. 2013. Automated malware classi�cation based on network behavior. In Computing,

Networking and Communications (ICNC), 2013 International Conference on. IEEE, 642–647.
[56] Swathi Pai, Fabio Di Troia, Corrado Aaron Visaggio, �omas H. Austin, and Mark Stamp. 2015. Clustering for malware

classi�cation. (2015).

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

https://doi.org/10.1109/CFIS.2015.7391648
https://doi.org/10.1016/j.engappai.2015.05.008
https://doi.org/10.1016/j.engappai.2015.05.008
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/graziano
https://doi.org/10.1007/BF02289588
https://doi.org/10.1007/BF02289588
https://doi.org/10.1016/j.neunet.2012.09.018
https://doi.org/10.1016/j.neunet.2012.09.018
http://dl.acm.org/citation.cfm?id=1248547.1248646
https://doi.org/10.1145/2487575.2488219
https://doi.org/10.1145/2487575.2488219

Survey on the Usage of Machine Learning Techniques for Malware Analysis 1:33

[57] Sirinda Palahan, Domagoj Babić, Swarat Chaudhuri, and Daniel Kifer. 2013. Extraction of statistically signi�cant
malware behaviors. In Computer Security Applications Conference. ACM, 69–78.

[58] Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sundaravel. 2010. Fast malware classi�cation by
automated behavioral graph matching. In Workshop on Cyber Security and Information Intelligence Research. ACM, 45.

[59] Mario Polino, Andrea Scorti, Federico Maggi, and Stefano Zanero. 2015. Jackdaw: Towards Automatic Reverse
Engineering of Large Datasets of Binaries. In Detection of Intrusions and Malware, and Vulnerability Assessment (Lecture
Notes in Computer Science), Magnus Almgren, Vincenzo Gulisano, and Federico Maggi (Eds.). Springer International
Publishing, 121–143. h�p://link.springer.com/chapter/10.1007/978-3-319-20550-2 7 DOI: 10.1007/978-3-319-20550-2 7.

[60] Hal Pomeranz. 2012. Detecting Malware With Memory Forensics. h�p://www.deer-run.com/∼hal/Detect Malware w
Memory Forensics.pdf. (2012). Accessed: 2016-11-28.

[61] Konrad Rieck, Philipp Trinius, Carsten Willems, and �orsten Holz. 2011. Automatic analysis of malware behavior
using machine learning. Journal of Computer Security 19, 4 (2011), 639–668.

[62] Lior Rokach and Oded Maimon. 2005. Clustering Methods. Springer US, Boston, MA, 321–352. h�ps://doi.org/10.1007/
0-387-25465-X 15

[63] B. G. Ryder. 1979. Constructing the Call Graph of a Program. Transactions on So�ware Engineering SE-5, 3 (May 1979),
216–226. h�ps://doi.org/10.1109/TSE.1979.234183

[64] Manish Kumar Sahu, Manish Ahirwar, and A Hemlata. 2014. A Review of Malware Detection Based on Pa�ern
Matching Technique. Int. J. of Computer Science and Information Technologies (IJCSIT) 5, 1 (2014), 944–947.

[65] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. 2013. Opcode sequences as representation of
executables for data-mining-based unknown malware detection. Information Sciences 231 (2013), 64–82.

[66] Igor Santos, Jaime Devesa, Félix Brezo, Javier Nieves, and Pablo Garcia Bringas. 2013. Opem: A static-dynamic
approach for machine-learning-based malware detection. In CISIS ’12-ICEUTE´ 12-SOCO´. Springer, 271–280.

[67] Igor Santos, Javier Nieves, and Pablo G. Bringas. 2011. International Symposium on Distributed Computing and Arti�cial
Intelligence. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Semi-supervised Learning for Unknown Malware
Detection, 415–422. h�ps://doi.org/10.1007/978-3-642-19934-9 53

[68] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo. 2001. Data mining methods for detection of new malicious executables.
In Security and Privacy, 2001. S P 2001. Proceedings. 2001 IEEE Symposium on. 38–49. h�ps://doi.org/10.1109/SECPRI.
2001.924286

[69] Joseph Sexton, Curtis Storlie, and Blake Anderson. 2015. Subroutine based detection of APT malware. Journal of
Computer Virology and Hacking Techniques (2015), 1–9. h�ps://doi.org/10.1007/s11416-015-0258-7

[70] Ahmed F Shosha, Cong Liu, Pavel Gladyshev, and Marcus Ma�en. 2012. Evasion-resistant malware signature based on
pro�ling kernel data structure objects. In CRiSIS, 2012. IEEE, 1–8.

[71] Muazzam Siddiqui, Morgan C. Wang, and Joohan Lee. 2009. Detecting Internet Worms using Data Mining Techniques.
Journal of Systemics, Cybernetics and Informatics (2009), 48–53.

[72] Sathaporn Srakaew, Warot Piyanuntcharatsr, and Suchitra Adulkasem. 2015. On the Comparison of Malware Detection
Methods Using Data Mining with Two Feature Sets. Journal of Security and Its Applications 9 (2015), 293–318.

[73] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. 2014. Guilt by association: large scale malware detection by
mining �le-relation graphs. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge Discovery
and Data Mining. ACM, 1524–1533.

[74] R. Tian, L. M. Ba�en, and S. C. Versteeg. 2008. Function length as a tool for malware classi�cation. In Malicious and
Unwanted So�ware, 2008. MALWARE 2008. 3rd International Conference on. 69–76. h�ps://doi.org/10.1109/MALWARE.
2008.4690860

[75] Jason Upchurch and Xiaobo Zhou. 2015. Variant: a malware similarity testing framework. In 2015 10th International
Conference on Malicious and Unwanted So�ware (MALWARE). IEEE, 31–39.

[76] Dolly Uppal, Roopak Sinha, Vishakha Mehra, and Vinesh Jain. 2014. Malware detection and classi�cation based on
extraction of API sequences. In Advances in Computing, Communications and Informatics (ICACCI, 2014 International
Conference on. IEEE, 2337–2342.

[77] Phani Vadrevu and Roberto Perdisci. 2016. MAXS: Scaling Malware Execution with Sequential Multi-Hypothesis
Testing. In ASIA CCS ’16 (ASIA CCS ’16). ACM, New York, NY, USA, 771–782. h�ps://doi.org/10.1145/2897845.2897873

[78] Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li, and Manos Antonakakis. 2013. Measuring and Detecting
Malware Downloads in Live Network Tra�c. Springer Berlin Heidelberg, Berlin, Heidelberg, 556–573. h�ps://doi.org/
10.1007/978-3-642-40203-6 31

[79] Ian H. Wi�en and Eibe Frank. 2005. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition
(Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[80] Tobias Wüchner, Martı́n Ochoa, and Alexander Pretschner. 2015. Robust and E�ective Malware Detection �rough
�antitative Data Flow Graph Metrics. In Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
98–118.

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

http://link.springer.com/chapter/10.1007/978-3-319-20550-2_7
http://www.deer-run.com/~hal/Detect_Malware_w_Memory_Forensics.pdf
http://www.deer-run.com/~hal/Detect_Malware_w_Memory_Forensics.pdf
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1109/TSE.1979.234183
https://doi.org/10.1007/978-3-642-19934-9_53
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1007/s11416-015-0258-7
https://doi.org/10.1109/MALWARE.2008.4690860
https://doi.org/10.1109/MALWARE.2008.4690860
https://doi.org/10.1145/2897845.2897873
https://doi.org/10.1007/978-3-642-40203-6_31
https://doi.org/10.1007/978-3-642-40203-6_31

1:34 Daniele Ucci, Leonardo Aniello, and Roberto Baldoni

[81] Joel Yonts. 2012. A�ributes of Malicious Files. Technical Report. �e SANS Institute.
[82] Dengyong Zhou, Olivier Bousquet, �omas Navin Lal, Jason Weston, and Bernhard Schölkopf. 2004. Learning with

local and global consistency. In Advances in Neural Information Processing Systems 16. MIT Press, 321–328.

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: October 2017.

	Abstract
	1 Introduction
	2 Background on Malware Analysis
	3 Malware Analysis Objectives
	3.1 Malware Detection
	3.2 Malware Variants Detection
	3.3 Malware Category Detection
	3.4 Malware Novelty and Similarity Detection
	3.5 Malware Development Detection
	3.6 Malware Attribution
	3.7 Malware Triage

	4 Malware Analysis Features
	4.1 Strings
	4.2 Byte sequences
	4.3 Opcodes
	4.4 APIs/System calls
	4.5 Memory accesses
	4.6 File system accesses
	4.7 Windows Registry
	4.8 CPU registers
	4.9 Function length
	4.10 PE file characteristics
	4.11 Raised exceptions
	4.12 Network
	4.13 AV/Sandbox submissions
	4.14 Code stylometry

	5 Malware Analysis Algorithms
	5.1 Signature-based
	5.2 Classification
	5.3 Clustering
	5.4 Others

	6 Characterization of Surveyed Papers
	6.1 Malware detection
	6.2 Malware variants detection
	6.3 Malware category detection
	6.4 Malware novelty and similarity detection
	6.5 Malware development detection
	6.6 Malware attribution
	6.7 Malware triage

	7 Datasets
	8 Malware Analysis Economics
	9 Conclusion
	References

